Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Proteome Res ; 23(1): 84-94, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37999680

ABSTRACT

Niemann-Pick disease, type C (NPC) is a neurodegenerative, lysosomal storage disorder in individuals carrying two mutated copies of either the NPC1 or NPC2 gene. Consequently, impaired cholesterol recycling and an array of downstream events occur. Interestingly, in NPC, the hippocampus displays lysosomal lipid storage but does not succumb to progressive neurodegeneration as significantly as other brain regions. Since defining the neurodegeneration mechanisms in this disease is still an active area of research, we use mass spectrometry to analyze the overall proteome and phosphorylation pattern changes in the hippocampal region of a murine model of NPC. Using 3 week old mice representing an early disease time point, we observed changes in the expression of 47 proteins, many of which are consistent with the previous literature. New to this study, changes in members of the SNARE complex, including STX7, VTI1B, and VAMP7, were identified. Furthermore, we identified that phosphorylation of T286 on CaMKIIα and S1303 on NR2B increased in mutant animals, even at the late stage of the disease. These phosphosites are crucial to learning and memory and can trigger neuronal death by altering protein-protein interactions.


Subject(s)
Niemann-Pick Disease, Type C , Proteome , Animals , Mice , Proteome/genetics , Proteome/metabolism , Disease Models, Animal , Intracellular Signaling Peptides and Proteins/metabolism , Niemann-Pick Disease, Type C/genetics , Hippocampus/metabolism
2.
Cancer Biol Med ; 20(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-37282627

ABSTRACT

Prostate cancer, one of the most frequently occurring cancers in men, is a heterogeneous disease involving multiple cell types within tumors. This tumor heterogeneity at least partly results from genomic instability leading to sub-clonal cellular differentiation. The differentiated cell populations originate from a small subset of cells with tumor-initiating and stem-like properties. These cells, termed prostate cancer stem cells (PCSCs), play crucial roles in disease progression, drug resistance, and relapse. This review discusses the origin, hierarchy, and plasticity of PCSCs; methods for isolation and enrichment of PCSCs; and various cellular and metabolic signaling pathways involved in PCSC induction and maintenance, as well as therapeutic targeting.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Cell Differentiation , Signal Transduction , Disease Progression , Neoplastic Stem Cells/pathology
3.
Amino Acids ; 55(8): 993-1001, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37311859

ABSTRACT

Gastric cancers are highly heterogeneous, deep-seated tumours associated with late diagnosis and poor prognosis. Post-translational modifications (PTMs) of proteins are known to be well-associated with oncogenesis and metastasis in most cancers. Several enzymes which drive PTMs have also been used as theranostics in cancers of the breast, ovary, prostate and bladder. However, there is limited data on PTMs in gastric cancers. Considering that experimental protocols for simultaneous analysis of multiple PTMs are being explored, a data-driven approach involving reanalysis of mass spectrometry-derived data is useful in cataloguing altered PTMs. We subjected publicly available mass spectrometry data on gastric cancer to an iterative searching strategy for fetching PTMs including phosphorylation, acetylation, citrullination, methylation and crotonylation. These PTMs were catalogued and further analyzed for their functional enrichment through motif analysis. This value-added approach delivered identification of 21,710 unique modification sites on 16,364 modified peptides. Interestingly, we observed 278 peptides corresponding to 184 proteins to be differentially abundant. Using bioinformatics approaches, we observed that majority of these altered PTMs/proteins belonged to cytoskeletal and extracellular matrix proteins, which are known to be perturbed in gastric cancer. The dataset derived by this mutiPTM investigation can provide leads to further investigate the potential role of altered PTMs in gastric cancer management.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Proteomics/methods , Protein Processing, Post-Translational , Phosphorylation , Proteins , Peptides , Acetylation
4.
Bioinformation ; 18(3): 141-146, 2022.
Article in English | MEDLINE | ID: mdl-36518145

ABSTRACT

Psoriasis is a polygenic chronic skin condition, associated with many systemic disorders. Though it is most studied dermatological condition, molecular mechanism leading to its pathogenesis is still unclear. An insight into its proteome may help unrevealing some biomarkers and therapeutic targets. In this study, we carried out mass spectrometry based quantitative proteomic analysis of serum from psoriasis patients by employing Tandem Mass Tags (TMT) approach. We identified 861,887 MS/MS spectra corresponding to 493 proteins. These dysregulated proteins were further classified by Gene Ontology and protein-protein interaction of dys-regulated proteins revealed networks in psoriasis patients.

5.
J Oral Maxillofac Pathol ; 26(2): 289, 2022.
Article in English | MEDLINE | ID: mdl-35968182

ABSTRACT

Background: Formalin-fixed paraffin-embedded (FFPE) tissue blocks are routinely preserved after pathological diagnosis and possess tremendous potential for biomarker discovery. These archival samples are prone to degradation on prolonged storage due to the formalin cross-linking. Aims: This study aimed to evaluate whether the storage period of the formalin-fixed paraffin-embedded tumor blocks had a significant impact on the yield and purity of the isolated DNA archived for 11 years. Settings and Design: A retrospective study was carried out in the Department of Oral Pathology and Microbiology in accordance with the Institutional Ethics Committee. Materials and Methods: Genomic DNA extraction was performed using TaKaRa DEXPAT Easy DNA kit from 40 FFPE tissue blocks of oral squamous cell carcinoma archived for 11 years (2006-2017). NanoDrop spectrophotometer was used to determine the DNA yield (A260) and purity (A260/A280 ratio). The quality of DNA fragments was validated using agarose gel electrophoresis. Statistical Analysis Used: Statistical analysis was obtained by SPSS 22, MS Excel and analyzed using the analysis of variance (ANOVA) test. P < 0.05 was set for statistical significance. Results: There was no statistically significant difference observed both in terms of DNA yield (P = 0.996) and purity (P = 0.997) of FFPE tumor blocks archived for 11 years among the study groups. Conclusions: It was concluded that, irrespective of years of storage of the FFPE, it is possible to extract genomic DNA and use it for molecular studies.

6.
OMICS ; 25(7): 450-462, 2021 07.
Article in English | MEDLINE | ID: mdl-34191607

ABSTRACT

Oral cancer is common worldwide but lacks robust diagnostics and therapeutics. Lifestyle factors, such as tobacco chewing and smoking, are significantly associated with oral cancers. Mapping the changes in the global proteome, secretome and post-translational modifications (PTMs) during tobacco exposure of oral keratinocytes hold great potential for understanding the mechanisms of oral carcinogenesis, not to mention for innovation toward clinical interventions in the future. On the other hand, although advances in mass spectrometry (MS)-based techniques have enabled the deep mining of complex proteomes, a large portion of the mass spectrometric data remains unassigned. These unassigned spectral data can be researched for multiple post-translational modifications (multiPTMs). Using data mining of publicly available proteomics data, we report, in this study, a multiPTM analysis of high-resolution MS-derived datasets on cellular proteome and secretome of chronic tobacco-treated oral keratinocytes. We identified 800 PTM sites in 496 proteins. Among them, 43 PTM sites in 37 proteins were found to be differentially expressed, accounting for their protein-level expression. Enrichment analysis of the proteins with altered phosphosite expression and the known kinases of these phosphosites discovered the overrepresentation of certain biological processes such as splicing and hemidesmosome assembly. These findings contribute to a deeper understanding of omics level changes in chronic tobacco-treated oral keratinocytes, and by extension, pathophysiology of oral cancers.


Subject(s)
Mouth Neoplasms , Proteome , Data Mining , Humans , Keratinocytes/metabolism , Mouth Neoplasms/genetics , Protein Processing, Post-Translational , Proteome/metabolism , Secretome , Nicotiana , Tobacco Use
7.
FASEB J ; 35(7): e21713, 2021 07.
Article in English | MEDLINE | ID: mdl-34105201

ABSTRACT

Syrian golden hamsters (Mesocricetus auratus) infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests lung pathology. In this study, efforts were made to check the infectivity of a local SARS-CoV-2 isolate in a self-limiting and non-lethal hamster model and evaluate the differential expression of lung proteins during acute infection and convalescence. The findings of this study confirm the infectivity of this isolate in vivo. Analysis of clinical parameters and tissue samples show the pathophysiological manifestation of SARS-CoV-2 infection similar to that reported earlier in COVID-19 patients and hamsters infected with other isolates. However, diffuse alveolar damage (DAD), a common histopathological feature of human COVID-19 was only occasionally noticed. The lung-associated pathological changes were very prominent on the 4th day post-infection (dpi), mostly resolved by 14 dpi. Here, we carried out the quantitative proteomic analysis of the lung tissues from SARS-CoV-2-infected hamsters on day 4 and day 14 post-infection. This resulted in the identification of 1585 proteins of which 68 proteins were significantly altered between both the infected groups. Pathway analysis revealed complement and coagulation cascade, platelet activation, ferroptosis, and focal adhesion as the top enriched pathways. In addition, we also identified altered expression of two pulmonary surfactant-associated proteins (Sftpd and Sftpb), known for their protective role in lung function. Together, these findings will aid in understanding the mechanism(s) involved in SARS-CoV-2 pathogenesis and progression of the disease.


Subject(s)
COVID-19/metabolism , COVID-19/pathology , Host-Pathogen Interactions , Lung/metabolism , Lung/virology , Proteomics , SARS-CoV-2/pathogenicity , Animals , COVID-19/virology , Cricetinae , Disease Models, Animal , Female , Lung/pathology , Male , Proteome/analysis , Proteome/biosynthesis , Reproducibility of Results , Viral Load
8.
Cancer Biomark ; 31(4): 361-373, 2021.
Article in English | MEDLINE | ID: mdl-34024816

ABSTRACT

BACKGROUND: Tobacco exposure (through smoking or chewing) is one of the predominant risk factors associated with the development of oral squamous cell carcinoma (OSCC). Despite the growing number of patients diagnosed with OSCC, there are few circulating biomarkers for identifying individuals at a higher risk of developing the disease. Successful identification of candidate molecular markers for risk assessment could aid in the early detection of oral lesions and potentially be used for community screening of high-risk populations. OBJECTIVE: Identification of differentially expressed proteins in the serum of oral cancer patients which can serve as biomarkers for the diagnosis of the onset of oral cancer among tobacco users. METHODS: We employed a tandem mass tag (TMT)-based quantitative proteomics approach to study alterations in the serum proteomes of OSCC patients based on their tobacco exposure habits (chewing and smoking) compared to healthy individuals with no history of using any form of tobacco or any symptoms of the disease. RESULTS: Mass spectrometry-based analysis resulted in the identification of distinct signatures in the serum of OSCC patients who either chewed or smoked tobacco. Pathway analysis revealed opposing effects of dysregulated proteins enriched in the complement-coagulation signaling cascades with a high expression of the Serpin family of proteins observed in OSCC patients who chewed tobacco compared to healthy individuals whereas these proteins showed decreased levels in OSCC patients who smoked. ELISA-based validation further confirmed our findings revealing higher expression of SERPINA6 and SERPINF1 across serum of OSCC patients who chewed tobacco compared to healthy individuals. CONCLUSIONS: This study serves as a benchmark for the identification of serum-based protein markers that may aid in the identification of high-risk patients who either chew tobacco or smoke tobacco.


Subject(s)
Mass Spectrometry/methods , Mouth Neoplasms/etiology , Nicotiana/chemistry , Proteomics/methods , Smokers/statistics & numerical data , Smoking/adverse effects , Tobacco Use/adverse effects , Humans , Mouth Neoplasms/pathology
9.
J Cell Commun Signal ; 15(3): 447-459, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33683571

ABSTRACT

Loss of cell differentiation is a hallmark for the progression of oral squamous cell carcinoma (OSCC). Archival Formalin-Fixed Paraffin-Embedded (FFPE) tissues constitute a valuable resource for studying the differentiation of OSCC and can offer valuable insights into the process of tumor progression. In the current study, we performed LC-MS/MS-based quantitative proteomics of FFPE specimens from pathologically-confirmed well-differentiated, moderately-differentiated, and poorly-differentiated OSCC cases. The data were analyzed in four technical replicates, resulting in the identification of 2376 proteins. Of these, 141 and 109 were differentially expressed in moderately-differentiated and poorly differentiated OSCC cases, respectively, compared to well-differentiated OSCC. The data revealed significant metabolic reprogramming with respect to lipid metabolism and glycolysis with proteins belonging to both these processes downregulated in moderately-differentiated OSCC when compared to well-differentiated OSCC. Signaling pathway analysis indicated the alteration of extracellular matrix organization, muscle contraction, and glucose metabolism pathways across tumor grades. The extracellular matrix organization pathway was upregulated in moderately-differentiated OSCC and downregulated in poorly differentiated OSCC, compared to well-differentiated OSCC. PADI4, an epigenetic enzyme transcriptional regulator, and its transcriptional target HIST1H1B were both found to be upregulated in moderately differentiated and poorly differentiated OSCC, indicating epigenetic events underlying tumor differentiation. In conclusion, the findings support the advantage of using high-resolution mass spectrometry-based FFPE archival blocks for clinical and translational research. The candidate signaling pathways identified in the study could be used to develop potential therapeutic targets for OSCC.

11.
F1000Res ; 9: 344, 2020.
Article in English | MEDLINE | ID: mdl-33274046

ABSTRACT

Cancer genome sequencing studies have revealed a number of variants in coding regions of several genes. Some of these coding variants play an important role in activating specific pathways that drive proliferation. Coding variants present on cancer cell surfaces by the major histocompatibility complex serve as neo-antigens and result in immune activation. The success of immune therapy in patients is attributed to neo-antigen load on cancer cell surfaces. However, which coding variants are expressed at the protein level can't be predicted based on genomic data. Complementing genomic data with proteomic data can potentially reveal coding variants that are expressed at the protein level. However, identification of variant peptides using mass spectrometry data is still a challenging task due to the lack of an appropriate tool that integrates genomic and proteomic data analysis pipelines. To overcome this problem, and for the ease of the biologists, we have developed a graphical user interface (GUI)-based tool called CusVarDB. We integrated variant calling pipeline to generate sample-specific variant protein database from next-generation sequencing datasets. We validated the tool with triple negative breast cancer cell line datasets and identified 423, 408, 386 and 361 variant peptides from BT474, MDMAB157, MFM223 and HCC38 datasets, respectively.


Subject(s)
Computational Biology , Databases, Protein , High-Throughput Nucleotide Sequencing , Software , Humans , Proteomics
12.
OMICS ; 24(12): 726-742, 2020 12.
Article in English | MEDLINE | ID: mdl-33170083

ABSTRACT

Coconut (Cocos nucifera L.), an important source of vegetable oil, nutraceuticals, functional foods, and housing materials, provides raw materials for a repertoire of industries engaged in the manufacture of cosmetics, soaps, detergents, paints, varnishes, and emulsifiers, among other products. The palm plays a vital role in maintaining and promoting the sustainability of farming systems of the fragile ecosystems of islands and coastal regions of the tropics. In this study, we present the genome of a dwarf coconut variety "Chowghat Green Dwarf" (CGD) from India, possessing enhanced resistance to root (wilt) disease. Utilizing short reads from the Illumina HiSeq 4000 platform and long reads from the Pacific Biosciences RSII platform, we have assembled the draft genome assembly of 1.93 Gb. The genome is distributed over 26,855 scaffolds, with ∼81.56% of the assembled genome present in scaffolds of lengths longer than 50 kb. About 77.29% of the genome was composed of transposable elements and repeats. Gene prediction yielded 51,953 genes, which upon stringent filtering, based on Annotation Edit Distance, resulted in 13,707 genes, which coded for 11,181 proteins. Among these, we gathered transcript level evidence for a total of 6828 predicted genes based on the RNA-Seq data from different coconut tissues, since they presented assembled transcripts within the genome annotation coordinates. A total of 112 nucleotide-binding and leucine-rich repeat loci, belonging to six classes, were detected. We have also undertaken the assembly and annotation of the CGD chloroplast and mitochondrial genomes. The availability of the dwarf coconut genome shall prove invaluable for deducing the origin of dwarf coconut cultivars, dissection of genes controlling plant habit and fruit color, and accelerated breeding for improved agronomic traits.


Subject(s)
Cocos/genetics , Computational Biology , Disease Resistance/genetics , Genome, Plant , Genomics , Molecular Sequence Annotation , Computational Biology/methods , Genomics/methods , High-Throughput Nucleotide Sequencing , Nutrigenomics/methods , Phenotype
13.
OMICS ; 24(6): 379-389, 2020 06.
Article in English | MEDLINE | ID: mdl-32496972

ABSTRACT

Mapping the normal eye proteome in healthy persons is essential to unravel the molecular basis of diseases impacting visual health. The vitreous occupies a large portion of the human eye between the lens and the retina and plays a significant role in vitreoretinal diseases as well as maintaining clarity in the visual field, providing nutrition to the lens, and protecting the eye from mechanical shocks. It comprises four distinct anatomical regions, namely the vitreous core, vitreous cortex, vitreous base, and anterior hyaloid. Among these, the vitreous is attached to other substructures in the eye by the vitreous base, which is its strongest point of attachment. Alterations in vitreous substructures have been reported in several vitreoretinal disorders, including vitreomacular traction, vitreoretinopathies, and age-related macular degeneration. There has been limited knowledge on proteomics variations at a resolution of vitreous substructures, including the functionally and pathophysiologically significant vitreous base. We report here new findings on the proteome map of the vitreous base in normal healthy tissue. We employed a global, unbiased proteomic profiling approach resulting in the identification of 6511 proteins. Of these, 302 proteins were involved in metabolic processes essential for energy utilization. Moreover, we identified several structural and nutrient transport proteins. Notably, the identified proteome repertoire indicates that the vitreous base might possess additional physiological functions and may not be a passive structure. This study constitutes the most extensive catalog of vitreous base proteins to our knowledge and offers novel insights as a baseline for future studies on the pathobiology of various eye diseases. These data also invite us to consider a potentially more active functional role for the vitreous base in eye physiology and visual health.


Subject(s)
Eye Proteins/metabolism , Proteome , Proteomics , Vitreous Body/metabolism , Computational Biology/methods , Data Analysis , Gene Ontology , Humans , Proteomics/methods , Signal Transduction , Tandem Mass Spectrometry
14.
OMICS ; 24(3): 129-139, 2020 03.
Article in English | MEDLINE | ID: mdl-32125911

ABSTRACT

Success rates of corneal transplantation are particularly high owing to its unique, innate immune privilege derived from a phenomenon known as Anterior Chamber-Associated Immune Deviation (ACAID). Of note, cornea is a transparent, avascular structure that acts as a barrier along with sclera to protect the eye and contributes to optical power. Molecular and systems biology mechanisms underlying ACAID and the immunologically unique and privileged status of cornea are not well known. We report here a global unbiased proteomic profiling of the human cornea and the identification of 4824 proteins, the largest catalog of human corneal proteins identified to date. Moreover, signaling pathway analysis revealed enrichment of spliceosome, phagosome, lysosome, and focal adhesion pathways, thereby demonstrating the protective functions of corneal proteins. We observed an enrichment of neutrophil-mediated immune response processes in the cornea as well as proteins belonging to the complement and ER-Phagosome pathways that are suggestive of active immune and inflammatory surveillance response. This study provides a key expression map of the corneal proteome repertoire that should enable future translational medicine studies on the pathological conditions of the cornea and the mechanisms by which cornea immunology are governed. Molecular mechanisms of corneal immune privilege have broad relevance to understand and anticipate graft rejection in the field of organ transplantation.


Subject(s)
Anterior Chamber/immunology , Cornea/immunology , Eye Proteins/genetics , Gene Regulatory Networks/immunology , Immune Privilege , Eye Proteins/classification , Eye Proteins/immunology , Focal Adhesions/immunology , Gene Expression Profiling , Gene Expression Regulation , Humans , Lysosomes/immunology , Neutrophils/immunology , Phagosomes/immunology , Proteomics/methods , Signal Transduction , Spliceosomes/immunology
15.
Int J Mol Sci ; 22(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383959

ABSTRACT

CD4+ T cells (T helper cells) are cytokine-producing adaptive immune cells that activate or regulate the responses of various immune cells. The activation and functional status of CD4+ T cells is important for adequate responses to pathogen infections but has also been associated with auto-immune disorders and survival in several cancers. In the current study, we carried out a label-free high-resolution FTMS-based proteomic profiling of resting and T cell receptor-activated (72 h) primary human CD4+ T cells from peripheral blood of healthy donors as well as SUP-T1 cells. We identified 5237 proteins, of which significant alterations in the levels of 1119 proteins were observed between resting and activated CD4+ T cells. In addition to identifying several known T-cell activation-related processes altered expression of several stimulatory/inhibitory immune checkpoint markers between resting and activated CD4+ T cells were observed. Network analysis further revealed several known and novel regulatory hubs of CD4+ T cell activation, including IFNG, IRF1, FOXP3, AURKA, and RIOK2. Comparison of primary CD4+ T cell proteomic profiles with human lymphoblastic cell lines revealed a substantial overlap, while comparison with mouse CD+ T cell data suggested interspecies proteomic differences. The current dataset will serve as a valuable resource to the scientific community to compare and analyze the CD4+ proteome.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation , Lymphocyte Activation , Proteome , Proteomics , Adaptive Immunity , Animals , CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Line , Humans , Immune Checkpoint Proteins/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mass Spectrometry , Mice , Proteomics/methods , Signal Transduction
16.
OMICS ; 23(6): 318-326, 2019 06.
Article in English | MEDLINE | ID: mdl-31120389

ABSTRACT

Elizabethkingia meningoseptica is Gram-negative, rod-shaped opportunistic bacterial pathogen increasingly reported in hospital-acquired outbreaks. This bacterium is well known to thrive in the hospital environment. One of the leading causes of meningitis in pediatric and immune-compromised patients, E. meningoseptica has been noted as a "pathogen of interest" in the context of nosocomial diseases associated with device-related infections in particular. This pathogen's multidrug-resistant phenotype and attendant lack of adequate molecular mechanistic data limit the current approaches for its effective management in hospitals and public health settings. This study provides the global proteome of E. meningoseptica. The reference strain E. meningoseptica ATCC 13253 was used for proteomic analysis using high-resolution Fourier transform mass spectrometry. The study provided translational evidence for 2506 proteins of E. meningoseptica. We identified multiple metallo-ß-lactamases, transcriptional regulators, and efflux transporter proteins associated with multidrug resistance. A protein Car D, which is an enzyme of the carbapenem synthesis pathway, was also discovered in E. meningoseptica. Further, the proteomics data were harnessed for refining the genome annotation. We discovered 39 novel protein-coding genes and corrected four existing translations using proteogenomic workflow. Novel translations reported in this study enhance the molecular data on this organism, thus improving current databases. We believe that the in-depth proteomic data presented in this study offer a platform for accelerated research on this pathogen. The identification of multiple proteins, particularly those involved in drug resistance, offers new future opportunities to design novel and specific antibiotics against infections caused by E. meningoseptica.


Subject(s)
Chryseobacterium/drug effects , Chryseobacterium/metabolism , Communicable Diseases/metabolism , Proteomics/methods , Anti-Bacterial Agents/pharmacology , Humans , Microbial Sensitivity Tests
17.
OMICS ; 23(2): 98-110, 2019 02.
Article in English | MEDLINE | ID: mdl-30767726

ABSTRACT

Eye disorders and resulting visual loss are major public health problems affecting millions of people worldwide. In this context, the sclera is an opaque, thick outer coat covering more than 80% of the eye, and essential in maintaining the shape of the eye and protecting the intraocular contents against infection and the external environment. Despite efforts undertaken to decipher the scleral proteome, the functional and structural picture of the sclera still remain elusive. Recently, proteomics has arisen as a powerful tool that enables identification of proteins playing a critical role in health and disease. Therefore, we carried out an in-depth proteomic analysis of the human scleral tissue using a high-resolution Orbitrap Fusion Tribrid mass spectrometer. We identified 4493 proteins using SequestHT and Mascot as search algorithms in Proteome Discoverer 2.1. Importantly, the proteins, including radixin, synaptopodin, paladin, netrin 1, and kelch-like family member 41, were identified for the first time in human sclera. Gene ontology analysis unveiled that the majority of proteins were localized to the cytoplasm and involved in cell communication and metabolism. In sum, this study offers the largest catalog of proteins identified in sclera with the aim of facilitating their contribution to diagnostics and therapeutics innovation in visual health and autoimmune disorders. This study also provides a valuable baseline for future investigations so as to map the dynamic changes that occur in sclera in various pathological conditions.


Subject(s)
Proteome/metabolism , Proteomics/methods , Sclera/metabolism , Computational Biology , Humans , Tandem Mass Spectrometry
18.
OMICS ; 22(12): 759-769, 2018 12.
Article in English | MEDLINE | ID: mdl-30571610

ABSTRACT

The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.


Subject(s)
Pituitary Gland, Anterior/metabolism , Proteome/metabolism , Proteomics/methods , Chromatography, Liquid , Humans , Mass Spectrometry
19.
OMICS ; 22(10): 642-652, 2018 10.
Article in English | MEDLINE | ID: mdl-30346883

ABSTRACT

Ophthalmology and visual health are new frontiers for postgenomic research and technologies such as proteomics. In this context, the optic nerve and retina extend as the outgrowth of the brain, wherein the latter receives the optical input and the former relays the information for processing. While efforts to understand the optic nerve proteome have been made earlier, there exists a lacuna in its biochemical composition and molecular functions. We report, in this study, a high-resolution mass spectrometry-based approach using an Orbitrap Fusion Tribrid mass spectrometer to elucidate the human optic nerve proteomic profile. Raw spectra were searched against NCBI Human RefSeq 75 database using SEQUEST HT and MASCOT algorithms. We identified nearly 35,000 peptides in human optic nerve samples, corresponding to 5682 proteins, of which 3222 proteins are being reported for the first time. Label-free quantification using spectral abundance pointed out to neuronal structural proteins such as myelin basic protein, glial fibrillary acidic protein, and proteolipid protein 1 as the most abundant proteins. We also identified several neurotransmitter receptors and postsynaptic density synaptosomal scaffold proteins. Pathway analysis revealed that a majority of the proteins are structural proteins and have catalytic and binding activity. This study is one of the largest proteomic profiles of the human optic nerve and offers the research community an initial baseline optic nerve proteome for further studies. This will also help understand the protein dynamics of the human optic nerve under normal conditions.


Subject(s)
Optic Nerve/metabolism , Proteome , Computational Biology , Humans , Mass Spectrometry , Proteins/chemistry , Proteins/metabolism
20.
J Oral Maxillofac Pathol ; 22(2): 180-187, 2018.
Article in English | MEDLINE | ID: mdl-30158769

ABSTRACT

AIMS: Oral squamous cell carcinoma (OSCC) primarily occurs in older age group. However, in the recent years, incidence of oral cancer in young people has been on rise worldwide. Towards this end, we sought to analyze the clinical and histopathological characteristics of OSCC in patients less than 45 years of age. MATERIALS AND METHODS: The clinical and histological features of patients diagnosed with squamous cell carcinoma of the oral cavity at two hospitals in the coastal Karnataka region of South India between 1996-2012 were reviewed. The tabulation and descriptive statistics of the study were carried out. RESULTS: A total of 420 patients were treated for OSCC in the 17-year period (1996-2012), of which 86 (20.5 %) patients were under 45 years of age. The most common site of involvement among the young was tongue (29.07%) and buccal mucosa (27.9%) respectively. A total of 47 (54.65%) patients were either habitual chewers, smokers, or alcoholics. Pathological grading of cases classified tumors into well differentiated (34.88%), moderately differentiated (46.51%) and poorly differentiated (4.65%). CONCLUSIONS: The data from this study reveals that a significant proportion of the OSCC cases are observed in patients of 45 years or younger. Additionally, our study also indicated an increase in the usage of tobacco and pan chewing in young adults in comparison to older individuals in the two hospitals of South India. The data obtained from this analysis emphasizes the need for screening programs that are tailor-made for individuals at high risk of developing oral cancer and warrants tobacco awareness programs in the community.

SELECTION OF CITATIONS
SEARCH DETAIL
...