Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13137, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849505

ABSTRACT

Acclimation to crop niches for thousands of years has made indigenous rice cultivars better suited for stress-prone environments. Still, their response to UV-B resiliency is unknown. 38 rice landraces were grown in cemented pots in a randomised block design with three replicates under open field conditions in Sambalpur University in the wet season of 2022. Half of the plants in each of the cultivars were administered UV-B radiation at the panicle emergence stage in an adjustable UV-B chamber permitting sunlight, and the effects of the stress on various morpho-physiological features, such as spikelet sterility, flag leaf photosynthetic and flavonoid pigment contents, and lipid peroxidation activities, were estimated for calibration of stress resistance. The experiment identified Swarnaprabha and Lalkain as the most sensitive and resilient to stress respectively, and the differential response between them was further revealed in the expression of genes related to UV-B sensitivity. Subject to the stress, Swarnaprabha exhibited symptoms of injuries, like leaf burns, and a higher loss of various photosynthetic parameters, such as pigment contents, SPAD and Fv/Fm, ETR and qP values, while NPQ increased only in Lalkain. Exposure to UV-B increased the total phenolic and flavonoid contents in Lalkain while depressing them in Swarnaprabha. Such an effect amounted to a higher release of fluorescent energy in the latter. The levels of expression of gene families controlling flavonoid activation and UV-B signal transduction, such as OsWRKY, OsUGT, OsRLCK, OsBZIP, OsGLP, and CPD photolyase were similar in both the cultivars in the control condition. However, exposure to UV-B stress overexpressed them in resilient cultivars only. The magnitude of expression of the genes and the impact of the stress on photosynthetic parameters, phenolic compounds and pubescent hair structure at the panicle emergence stage could be valid indicators among indigenous rice for UV-B tolerance.


Subject(s)
Genetic Variation , Oryza , Photosynthesis , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Oryza/genetics , Oryza/radiation effects , Oryza/growth & development , Photosynthesis/radiation effects , Gene Expression Regulation, Plant/radiation effects , Plant Leaves/radiation effects , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Flavonoids/metabolism , Stress, Physiological
2.
Sci Rep ; 13(1): 9032, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37270542

ABSTRACT

Identification of the Sub1 gene for tolerance to flash flooding and its introgression into high-yielding rice cultivars are major targets in rice breeding for flood-prone rice agro-ecosystems for ensuring yield stability. However, knowledge is scant on the response of the modified genotypes under stagnant flooding (SF) to meet the challenge of finding a superior allele that may confer greater resilience to the plant under a stress-prone environment. In pursuance, we have tested the response of Sub1-introgression in two popular rice varieties, Swarna and Savitri to SF by comparing the biochemical factors in the control of flag leaf senescence and its primary production mechanisms of the parental lines' versus Sub1-introgressed lines. The activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GR), and ascorbate peroxidase (APX) increased while various parameters of primary production like total chlorophyll content, stomatal conductance (gs), normalized difference vegetation index (NDVI) and photosynthetic activity (Pn) decreased progressively with passage of time in the flag leaf of the cultivars during the post-anthesis period and SF-treatment increased the enzyme activity while depressing primary production further. Introgression of Sub1 had no influence on these activities under control conditions but widened the margin of effects under SF. It was concluded that the functional ability of flag leaf in mega rice cultivars like Swarna and Savitri decreased significantly by SF because of an ethylene-mediated promotion of senescence of the flag leaf. The enhancement of antioxidant enzyme activity by SF could not sustain the stability of primary production in the flag leaf. The introgression of the Sub1 gene made the cultivars more vulnerable to SF because the gene induced overexpression of ethylene.


Subject(s)
Oryza , Oryza/genetics , Floods , Antioxidants , Ecosystem , Plant Breeding , Ethylenes
3.
Sci Rep ; 11(1): 5573, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33692374

ABSTRACT

Control of stage specific spike in ethylene production at anthesis has been a vauable route to potentially enhance genetic ceiling for grain filling of rice spikelet. A number of genes controlling ethylene homeostasis and starch synthesis have been identified so long, but lack of credible information on master modulation of gene expression by miRNAs and their target genes associated with hormonal dynamics obfuscate mechanisms controlling genotype difference in quantum of grain filling. The confusion accounts for consequent shrinkage of options for yield manipulation. In a two by two factorial design, miRNA regulation of spikelet specific grain development in low against high sterile recombinant inbred lines of rice Oryza sativa L. namely CR 3856-62-11-3-1-1-1-1-1-1 (SR 157) and CR 3856-63-1-1-1-1-1-1-1 (SR 159) respectively, and inferior verses superior spikelets were compared during first 10 days after anthesis. Grain filling was poorer in SR159 than SR157 and inferior spikelets in the former were most vulnerable. Between the cultivars, overall expression of unique miRNAs with targets on ethylene pathway genes was higher in SR159 than SR157 and the situation was opposite for auxin pathway genes. Precision analysis in psTarget server database identified up-regulation of MIR2877 and MIR530-5p having Os11t0141000-02 and Os07t0239400-01 (PP2A regulatory subunit-like protein and ethylene-responsive small GTP-binding proteins) and MIR396h having Os01t0643300-02 (an auxin efflux carrier protein) and Os01t0643300-01 (a PIN1-like auxin transport protein), as targets with highest probability at anthesis and 5 days after anthesis respectively, in the inferior spikelet and the fold change values of DGE matched with pattern of gene expression (relative transcript level) in the qRT-PCR studies conducted for relevant miRNAs and protein factors for ethylene and auxin signalling. In conclusion, epigenetic regulation of both auxin and ethylene homeostasis control grain filling of rice spikelet was established, but evidences were more robust for the latter.


Subject(s)
Endosperm , Gene Expression Regulation, Plant , MicroRNAs , Oryza , RNA, Plant , Starch , Transcriptome , Endosperm/genetics , Endosperm/metabolism , MicroRNAs/biosynthesis , MicroRNAs/genetics , Oryza/genetics , Oryza/metabolism , RNA, Plant/biosynthesis , RNA, Plant/genetics , Starch/biosynthesis , Starch/genetics
4.
Sci Rep ; 9(1): 18567, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811177

ABSTRACT

In the recent time, Submergence1 (Sub1)QTL, responsible for imparting tolerance to flash flooding, has been introduced in many rice cultivars, but resilience of the QTL to stagnant flooding (SF) is not known. The response of Sub1-introgression has been tested on physiology, molecular biology and yield of two popular rice cultivars (Swarna and Savitri) by comparison of the parental and Sub1-introgression lines (SwarnaSub1 and SavitriSub1) under SF. Compared to control condition SF reduced grain yield and tiller number and increased plant height and Sub1- introgression mostly matched these effects. SF increased ethylene production by over-expression of ACC-synthase and ACC-oxidase enzyme genes of panicle before anthesis in the parental lines. Expression of the genes changed with Sub1-introgression, where some enzyme isoform genes over-expressed after anthesis under SF. Activities of endosperm starch synthesizing enzymes SUS and AGPase declined concomitantly with rise ethylene production in the Sub1-introgressed lines resulting in low starch synthesis and accumulation of soluble carbohydrates in the developing spikelets. In conclusion, Sub1-introgression into the cultivars increased susceptibility to SF. Subjected to SF, the QTL promoted genesis of ethylene in the panicle at anthesis to the detriment of grain yield, while compromising with morphological features like tiller production and stem elongation.


Subject(s)
Ethylenes/biosynthesis , Genes, Plant/genetics , Genetic Introgression , Oryza/physiology , Quantitative Trait Loci , Adaptation, Physiological/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Endosperm/growth & development , Endosperm/metabolism , Floods , Gene Expression Regulation, Plant , Plant Growth Regulators/biosynthesis , Plant Shoots/growth & development , Plant Shoots/metabolism , Plants, Genetically Modified/physiology , Starch/biosynthesis
5.
Funct Plant Biol ; 46(6): 507-523, 2019 06.
Article in English | MEDLINE | ID: mdl-30961785

ABSTRACT

The advent of dwarf statured rice varieties enabled a major breakthrough in yield and production, but raising the ceiling of genetically determined yield potential even further has been the breeding priority. Grain filling is asynchronous in the rice panicle; the inferior spikelets particularly on secondary branches of the basal part do not produce grains of a quality suitable for human consumption. Of the various strategies being considered, the control of ethylene production at anthesis has been a valuable route to potentially enhance genetic yield level of rice. The physiology underlying spikelet development has revealed spikelet position-specific ethylene levels determine the extent of grain filling, with higher levels resulting in ill-developed spikelet embodying poor endosperm starch content. To break the yield barrier, breeders have increased spikelet number per panicle in new large-panicle rice plants. However, the advantage of panicles with numerous spikelets has not resulted in enhanced yield because of poor filling of inferior spikelets. High spikelet number stimulates ethylene production and downgrading of starch synthesis, suggesting a trade-off between spikelet number and grain filling. High ethylene production in inferior spikelets suppresses expression of genes encoding endosperm starch synthesising enzymes. Hence, ethylene could be a retrograde signal that dictates the transcriptome dynamics for the cross talk between spikelet number and grain filling in the rice panicle, so attenuation of its activity may provide a solution to the problem of poor grain filling in large-panicle rice. This physiological linkage that reduces starch biosynthesis of inferior kernels is not genetically constitutive and amenable for modification through chemical, biotechnological, surgical and allelic manipulations. Studies on plant genotypes with different panicle architecture have opened up possibilities of selectively improving starch biosynthesis of inferior spikelets and thereby increasing grain yield through a physiological route.


Subject(s)
Oryza , Edible Grain , Endosperm , Plant Proteins , Starch
6.
Funct Plant Biol ; 46(6): 595, 2019 06.
Article in English | MEDLINE | ID: mdl-32172735

ABSTRACT

The advent of dwarf statured rice varieties enabled a major breakthrough in yield and production, but raising the ceiling of genetically determined yield potential even further has been the breeding priority. Grain filling is asynchronous in the rice panicle; the inferior spikelets particularly on secondary branches of the basal part do not produce grains of a quality suitable for human consumption. Of the various strategies being considered, the control of ethylene production at anthesis has been a valuable route to potentially enhance genetic yield level of rice. The physiology underlying spikelet development has revealed spikelet position-specific ethylene levels determine the extent of grain filling, with higher levels resulting in ill-developed spikelet embodying poor endosperm starch content. To break the yield barrier, breeders have increased spikelet number per panicle in new large-panicle rice plants. However, the advantage of panicles with numerous spikelets has not resulted in enhanced yield because of poor filling of inferior spikelets. High spikelet number stimulates ethylene production and downgrading of starch synthesis, suggesting a trade-off between spikelet number and grain filling. High ethylene production in inferior spikelets suppresses expression of genes encoding endosperm starch synthesising enzymes. Hence, ethylene could be a retrograde signal that dictates the transcriptome dynamics for the cross talk between spikelet number and grain filling in the rice panicle, so attenuation of its activity may provide a solution to the problem of poor grain filling in large-panicle rice. This physiological linkage that reduces starch biosynthesis of inferior kernels is not genetically constitutive and amenable for modification through chemical, biotechnological, surgical and allelic manipulations. Studies on plant genotypes with different panicle architecture have opened up possibilities of selectively improving starch biosynthesis of inferior spikelets and thereby increasing grain yield through a physiological route.

7.
PLoS One ; 10(12): e0145749, 2015.
Article in English | MEDLINE | ID: mdl-26710230

ABSTRACT

Breeding programs for increasing spikelet number in rice have resulted in compactness of the panicle, accompanied by poor grain filling in inferior spikelets. Although the inefficient utilization of assimilate has been indicated as responsible for this poor grain filling, the underlying cause remains elusive. The current study utilized the suppression subtractive hybridization technique to identify 57 and 79 genes that overexpressed in the superior and inferior spikelets (with respect to each other), respectively, of the compact-panicle rice cultivar Mahalaxmi. Functional categorization of these differentially expressed genes revealed a marked metabolic difference between the spikelets according to their spatial location on the panicle. The expression of genes encoding seed storage proteins was dominant in inferior spikelets, whereas genes encoding regulatory proteins, such as serine-threonine kinase, zinc finger protein and E3 ligase, were highly expressed in superior spikelets. The expression patterns of these genes in the inferior and superior spikelets of Mahalaxmi were similar to those observed in another compact-panicle cultivar, OR-1918, but differed from those obtained in two lax-panicle cultivars, Upahar and Lalat. The results first suggest that the regulatory proteins abundantly expressed in the superior spikelets of compact-panicle cultivars and in both the superior and inferior spikelets of lax-panicle cultivars but poorly expressed in the inferior spikelets of compact-panicle cultivars promote grain filling. Second, the high expression of seed-storage proteins observed in the inferior spikelets of compact-panicle cultivars appears to inhibit the grain filling process. Third, the low expression of enzymes of the Krebs cycle in inferior spikelets compared with superior spikelets of compact-panicle cultivars is bound to lead to poor ATP generation in the former and consequently limit starch biosynthesis, an ATP-consuming process, resulting in poor grain filling.


Subject(s)
Genes, Plant , Oryza/genetics , Adenosine Triphosphate/metabolism , Citric Acid Cycle/genetics , DNA, Complementary/genetics , DNA, Plant/genetics , Edible Grain/genetics , Edible Grain/metabolism , Expressed Sequence Tags , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Plant/genetics , Seed Storage Proteins/genetics , Seed Storage Proteins/metabolism , Subtractive Hybridization Techniques , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL