Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Chromatogr ; 38(5): e5836, 2024 May.
Article in English | MEDLINE | ID: mdl-38308120

ABSTRACT

Apple, a major fruit of temperate Himalayas, is sprayed with chemical pesticides around 12 times during the cropping season. Various systemic and contact fungicides are applied for the management of major diseases. In order to manage disease, flusilazole 40 EC is frequently used. However, excessive chemical application has been found to be detrimental for consumer safety. Keeping in view consumer safety, risk assessment, the half-life and waiting period for flusilazole 40 EC were evaluated on the Red Velox variety of apple. The QuEChERS (quick, easy, cheap, effective, rugged and safe) method and high-performance liquid chromatography were adapted for sample processing and analysis, respectively. The recovery percentages of flusilazole at three fortification levels (0.04, 0.09 and 0.50 mg kg-1) were 98.85, 99.83 and 98.98%, respectively. Flusilazole at the recommended dose (80 g a.i. ha-1) left an initial deposit of 0.733 mg kg-1, which dissipated by 93.45% in 60 days and was non-detectable beyond this period. Meanwhile flusilazole at double the recommended dose (160 g a.i. ha-1) left an initial deposit of 0.913 mg kg-1, which dissipated by 93.43% in 70 days and was non-detectable beyond this period. Based on the maximum residue limit of 0.3 mg kg-1 as prescribed by the Codex Alimentarius Commission, a waiting period of 28.74 and 46.03 days was recorded for single and double doses, respectively. Moreover, in order to assess the consumer risk, theoretical maximum residue contributions (TMRCs) were derived using flusilazole residues (average and maximum) recorded at various time intervals and compared with the maximum permissible intake, which was found to be 0.42 mg per person per day. Based on the average per capita daily consumption of 6.76 g apple in India, the TMRC values were computed. Although the values of TMRC decreased below maximum permissible intake at the first day after application, indicating minimal consumer health risks, fruits sprayed with a double dose of flusilazole carried the risk even up to the tenth day after flusilazole application. The results of the present study will be valuable for safe and timely use of flusilazole on apple.


Subject(s)
Fungicides, Industrial , Limit of Detection , Malus , Pesticide Residues , Silanes , Triazoles , Malus/chemistry , Pesticide Residues/analysis , Chromatography, High Pressure Liquid/methods , Triazoles/analysis , Triazoles/chemistry , Fungicides, Industrial/analysis , Reproducibility of Results , Risk Assessment , Linear Models , Food Contamination/analysis
2.
Plants (Basel) ; 12(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37765402

ABSTRACT

Wheat is highly affected by stripe rust disease, particularly under cooler environments, and the losses can reach up to 100 percent depending on the intensity of infection and the susceptibility of the genotype. The most effective method to manage this disease is the use of resistant varieties. In the present study, 192 wheat genotypes were evaluated for stripe rust resistance under field conditions and also in a laboratory using molecular markers. These lines included pre-breeding germplasm developed for rust resistance and some high-yielding commercially grown wheat varieties. Out of 192 genotypes, 53 were found to be resistant, and 29 showed moderate resistance reaction under field conditions, whereas the remaining genotypes were all either moderately susceptible or susceptible. Under controlled conditions, out of 109 genotypes, only 12 were found to be resistant to all the six virulent/pathogenic pathotypes. Additionally, a selection of 97 genotypes were found resistant in field screening and were subjected to molecular validation using the markers linked to major R-genes, viz., Yr5, Yr10, Yr15 and Yr17. Nine genotypes possessed the Yr5 gene, twelve had the Yr10 gene, fourteen had the Yr15 gene and thirty-two had the Yr17 gene. The resistance genes studied in the current study are effective in conferring resistance against stripe rust disease. The genotypes identified as resistant under both field and controlled conditions can be used as sources in stripe rust resistance breeding programs.

3.
Front Toxicol ; 5: 1193386, 2023.
Article in English | MEDLINE | ID: mdl-37521752

ABSTRACT

Plastic is a pervasive material that has become an indispensable part of our daily lives and is used in various commercial products. However, plastic waste has significantly impacted the environment, accumulating in water and land ecosystems and harming all forms of life. When plastic degrades, it breaks down into smaller particles called microplastics (MPs), which can further breakdown into nanoplastics (NPs). Due to their small size and potential toxicity to humans, NPs are of particular concern. During the COVID-19 pandemic, the production of plastic had reached unprecedented levels, including essential medical kits, food bags, and personal protective equipment (PPE), which generate MPs and NPs when burned. MPs and NPs have been detected in various locations, such as air, food, and soil, but our understanding of their potential adverse health effects is limited. This review aims to provide a comprehensive overview of the sources, interactions, ecotoxicity, routes of exposure, toxicity mechanisms, detection methods, and future directions for the safety evaluation of MPs and NPs. This would improve our understanding of the impact of MPs and NPs on our health and environment and identify ways to address this global crisis.

4.
Molecules ; 27(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36144621

ABSTRACT

More than 70% of our planet is covered by extremely cold environments, nourishing a broad diversity of microbial life. Temperature is the most significant parameter that plays a key role in the distribution of microorganisms on our planet. Psychrophilic microorganisms are the most prominent inhabitants of the cold ecosystems, and they possess potential cold-active enzymes with diverse uses in the research and commercial sectors. Psychrophiles are modified to nurture, replicate, and retain their active metabolic activities in low temperatures. Their enzymes possess characteristics of maximal activity at low to adequate temperatures; this feature makes them more appealing and attractive in biotechnology. The high enzymatic activity of psychrozymes at low temperatures implies an important feature for energy saving. These enzymes have proven more advantageous than their mesophilic and thermophilic counterparts. Therefore, it is very important to explore the efficiency and utility of different psychrozymes in food processing, pharmaceuticals, brewing, bioremediation, and molecular biology. In this review, we focused on the properties of cold-active enzymes and their diverse uses in different industries and research areas. This review will provide insight into the areas and characteristics to be improved in cold-active enzymes so that potential and desired enzymes can be made available for commercial purposes.


Subject(s)
Cold Temperature , Ecosystem , Biotechnology , Enzymes/metabolism , Pharmaceutical Preparations
5.
J Fungi (Basel) ; 7(12)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34947042

ABSTRACT

Rice blast is considered one of the most important fungal diseases of rice. Although diseases can be managed by using resistant cultivars, the blast pathogen has successfully overcome the single gene resistance in a short period and rendered several varieties susceptible to blast which were otherwise intended to be resistant. As such, chemical control is still the most efficient method of disease control for reducing the losses caused due to diseases. Field experiments were conducted over two successive years, 2018 and 2019, in temperate rice growing areas in northern India. All the fungicides effectively reduced leaf blast incidence and intensity, and neck blast incidence under field conditions. Tricyclazole proved most effective against rice blast and recorded a leaf blast incidence of only 8.41%. Among the combinations of fungicides, azoxystrobin + difenoconazole and azoxystrobin + tebuconazole were highly effective, recording a leaf blast incidence of 9.19 and 10.40%, respectively. The chemical combination mancozeb + carbendazim proved less effective in controlling the blast and it recorded a disease incidence of 27.61%. A similar trend was followed in neck blast incidence with tricyclazole, azoxystrobin + difenoconazole, and azoxystrobin + tebuconazole showing the highest levels of blast reductions. It is evident from the current study that the tested fungicide combinations can be used as alternatives to tricyclazole which is facing the challenges of fungicide resistance development and other environmental concerns and has been banned from use in India and other countries. The manuscript may provide a guideline of fungicide application to farmers cultivating susceptible varieties of rice.

6.
Microorganisms ; 9(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34576858

ABSTRACT

Trichoderma is the most commonly used fungal biocontrol agent throughout the world. In the present study, various Trichoderma isolates were isolated from different vegetable fields. In the isolated microflora, the colony edges varied from wavy to smooth. The mycelial forms were predominantly floccose with hyaline color and conidiophores among all the strains were highly branched. Based on morphological attributes, all the isolates were identified as Trichoderma harzianum. The molecular identification using multilocus sequencing ITS, rpb2 and tef1α, genes further confirmed the morphological identification. The average chitinase activity varied from 1.13 units/mL to 3.38 units/mL among the various isolates, which increased linearly with temperature from 15 to 30 °C. There was an amplified production in the chitinase production in the presence of Mg+ and Ca2+ and Na+ metal ions, but the presence of certain ions was found to cause the down-regulated chitinase activity, i.e., Zn2+, Hg2+, Fe2+, Ag+ and K+. All the chitinase producing Trichoderma isolates inhibited the growth of tested pathogens viz., Dematophora necatrix, Fusarium solani, Fusarium oxysporum and Pythium aphanidermatum at 25% culture-free filtrate concentration under in vitro conditions. Also, under in vivo conditions, the lowest wilt incidence and highest disease control on Fusarium oxysporum was observed in isolate BT4 with mean wilt incidence and disease control of 21% and 48%, respectively. The Trichoderma harzianum identified in this study will be further used in formulation development for the management of diseases under field conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...