Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(4): e2304393, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712098

ABSTRACT

Healed defects on photocatalysts surface and their interaction with plasmonic nanoparticles (NPs) have attracted attention in H2 production process. In this study, surface oxygen vacancy (Vo ) defects are created on ZnO (Vo -ZnO) NPs by directly pyrolyzing zeolitic imidazolate framework. The surface defects on Vo -ZnO provide active sites for the diffusion of single Au atoms and as nucleation sites for the formation of Au NPs by the in situ photodeposition process. The electronically healed surface defects by single Au atoms help in the formation of a heterojunction between the ZnO and plasmonic Au NPs. The formed Au/Vo -Au:ZnO-4 heterojunction prolongs photoelectron lifetimes and increases donor charge density. Therefore, the optimized photocatalysts of Au/Vo -Au:ZnO-4 has 21.28 times higher H2 production rate than the pristine Vo -ZnO under UV-visible light in 0.35 m Na2 SO4 and 0.25 m Na2 SO3 . However in 0.35 m Na2 S and 0.25 m Na2 SO3 , the H2 production rate is 25.84 mmole h-1 g-1 . Furthermore, Au/Vo -Au:ZnO-4 shows visible light activity by generating hot carries via induced surface plasmonic effects. It has 48.58 times higher H2 production rate than pristine Vo -ZnO. Therefore, this study infers new insight for defect healing mediated preparation of Au/Vo -Au:ZnO heterojunction for efficient photocatalytic H2 production.

2.
J Colloid Interface Sci ; 642: 540-553, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37028161

ABSTRACT

Resistive switching (RS) memories have attracted great attention as promising solutions to next-generation non-volatile memories and computing technologies because of their simple device configuration, high on/off ratio, low power consumption, fast switching, long retention, and significant cyclic stability. In this work, uniform and adherent iron tungstate (FeWO4) thin films were synthesized by the spray pyrolysis method with various precursor solution volumes, and these were tested as a switching layer for the fabrication of Ag/FWO/FTO memristive devices. The detailed structural investigation was done through various analytical and physio-chemical characterizations viz. X-ray diffraction (XRD) and its Rietveld refinement, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) techniques. The results reveal the pure and single-phase FeWO4 compound thin film formation. Surface morphological study shows the spherical particle formation having a diameter in the range of 20 to 40 nm. The RS characteristics of the Ag/FWO/FTO memristive device demonstrate non-volatile memory characteristics with significant endurance and retention properties. Interestingly, the memory devices show stable and reproducible negative differential resistance (NDR) effects. The in-depth statistical analysis suggests the good operational uniformity of the device. Moreover, the switching voltages of the Ag/FWO/FTO memristive device were modeled using the time series analysis technique by utilizing Holt's Winter Exponential Smoothing (HWES) approach. Additionally, the device mimics bio-synaptic properties such as potentiation/depression, excitatory post-synaptic current (EPSC), and spike-timing-dependent plasticity (STDP) learning rules. For the present device, the space-charge-limited current (SCLC) and trap-controlled-SCLC effects dominated during positive and negative bias I-V characteristics, respectively. The RS mechanism dominated in the low resistance state (LRS), and the high resistance state (HRS) was explained based on the formation and rupture of conductive filament composed of Ag ions and oxygen vacancies. This work demonstrates the RS in the metal tungstate-based memristive devices and demonstrates a low-cost approach for fabricating memristive devices.

3.
Inorg Chem ; 59(3): 1996-2004, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31922740

ABSTRACT

Highly durable and earth-abundant bifunctional catalysts with low cell voltage are desirable for alkaline overall water splitting in the industrial fields. Herein, a novel carbon-based CoP hybrid with spatial compartmentalization of CoP nanoparticles (NPs) in P-doped dual carbon shells is achieved via a cheap Co-glycerate-template strategy. Benefitted from the uniform atomic blending of Co2+ ions in the Co-glycerate precursors, CoP NPs in situ formed in the confined space with NaH2PO2 as phosphorus source during the annealing process; meanwhile, glycerate suffered carbonization and transformed into P-doped dual carbon shells during the annealing process, including interior thin carbon coating, closely encircled CoP NP, and peripheral hollow carbon sphere loading a lot of CoP NPs. Not only does spatial compartmentalization of CoP NPs avoid the aggregation and expose more active sites but also P-doped dual carbon shells improve the conductivity and durability of the catalyst. As expected, the optimized hybrid exhibits outstanding electrocatalytic activities in alkaline media, such as hydrogen evolution reaction (HER) overpotential of 101 mV, oxygen evolution reaction (OER) overpotential of 280 mV, and a low cell voltage of 1.66 V to deliver a current density of 10 mA cm-2. Moreover, durability and stability are greatly improved under harsh electrochemical conditions. The current strategy shades new insight into the development of carbon-based transition metal phosphides (TMP) catalysts for electrocatalysis applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...