Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(17): 7589-7603, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38635870

ABSTRACT

A series of isomeric bis-2,6-(monoalkoxyphenyl)pyridine and bis-2,6-(dialkoxyphenyl)pyridine ligands were synthesized and characterized. In order to prepare their chlorogold(III) complexes, intermediate chloromercury(II) complexes were first prepared, but unlike observations from previous studies where they were obtained impure and at best in moderate yield, here pure complexes were synthesized, many in rather high yields. Depending on the substitution pattern of the alkoxy chains on the ligands, mono- and/or dimercurated complexes were obtained, characterized by 1H, 13C{1H}, and 199Hg NMR spectroscopy as well as, in several cases, by X-ray crystallography. Factors that may explain this unusual reactivity are discussed. In most cases, transmetalation to the related chlorogold(III) complex proceeded smoothly, although lower yields were obtained when starting from doubly mercurated precursors. Prompted by the propensity of these ligands to mercurate, attempts were made to effect direct auration, but none was successful. However, dimeric, orthometalated complexes of palladium(II) could be prepared and were also amenable to transmetalation to the chlorogold(III) complex, providing for a mercury-free synthesis.

2.
Chemphyschem ; 24(13): e202300133, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37013973

ABSTRACT

In liquid crystalline systems, the presence of polar groups at lateral or terminal positions is fundamentally and technologically important. Bent-core nematics composed of polar molecules with short rigid cores usually exhibit highly disordered mesomorphism with some ordered clusters that favourably nucleate within. Herein, we have systematically designed and synthesized two new series of highly polar bent-core compounds comprised of two unsymmetrical wings, highly electronegative -CN and -NO2 groups at one end, and flexible alkyl chains at the other end. All the compounds showed a wide range of nematic phases composed of cybotactic clusters of smectic-type (Ncyb ). The birefringent microscopic textures of the nematic phase were accompanied by dark regions. Further, the cybotactic clustering in the nematic phase was characterized via temperature-dependent XRD studies and dielectric spectroscopy. Besides, the birefringence measurements demonstrated the ordering of the molecules in the cybotactic clusters upon lowering the temperature. DFT calculations illustrated the favourable antiparallel arrangement of these polar bent-core molecules as it minimizes the large net dipole moment of the system.

3.
ACS Appl Mater Interfaces ; 14(37): 42628-42634, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36082439

ABSTRACT

In this study, we used a new series of highly polar three-ring-based bent-core liquid crystals (BCLCs) to stabilize a wide temperature range of blue phase III (BPIII), including room temperature. A significant finding is the implementation of electro-optical (E-O) switching at room temperature in the current BPIII system. The observed Kerr constant (K) has an extraordinarily high value (K ≈ 9.2 × 10-9m V-2) that exceeds all previously reported values in the category of BPIII materials. The extremely high value of K realizes the lowest operating voltage (Von ≈ 3.3 Vrms/µm) for BPIII. The measured values of K and Von in BPIII set a new limit for the experimentalist. The millisecond (ms) order response times are explained based on rotational viscosity. The present binary system of BPIII materials is an excellent choice for device application.

4.
Chem Sci ; 13(8): 2249-2257, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35310491

ABSTRACT

"de Vries" liquid crystals, defined by a maximum layer shrinkage of ≤1% from the smectic A to C phase transition, are an integral component of ferroelectric liquid crystal (FLC) displays. Bona fide de Vries materials described in the literature are primarily perfluorinated, polysiloxane and polysilane-terminated rod-like (or calamitic) LCs. Herein, for the first time, we report a series of newly designed achiral unsymmetrical bent-core molecules with terminal alkoxy chains exhibiting similar properties to "de Vries" LCs. The new molecular structure is based on the systematic distribution of four phenyl rings attached via ester and imine linkers having 3-amino-2-methylbenzoic acid as the central core with a bent angle of 147°. Detailed microscopic investigations in differently aligned (planar as well as homeotropic) cells along with SAXS/WAXS studies revealed that the materials exhibited a SmA-SmC phase sequence along with the appearance of the nematic phase at higher temperatures. SAXS measurements divulged the layer spacings (d-spacings) and hence, the layer shrinkage was calculated ranging from 0.19% to 0.68% just below the SmA-SmC transition. The variation of the calculated molecular tilt angle (α) derived from the temperature-dependent SAXS data, followed the power law with exponent values 0.29 ± 0.01 and 0.25 ± 0.01 for compounds 1/10 and 1/12, respectively. The experimental values obtained were very close to the theoretically predicted values for the materials with de Vries-like properties. The analysis of temperature-dependent birefringence studies based on the prediction of the Landau theory, showed a dip across the SmA-SmC phase transition typical of compounds exhibiting the de Vries characteristics. The collective results obtained suggest "de Vries" SmA as a probable model for this bent-core system which may find applications in displays.

5.
Chemphyschem ; 22(13): 1361-1370, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33956388

ABSTRACT

A study on the photoswitching behavior of azobenzene-based polar hockey-stick-shaped liquid crystals (HSLCs) has been presented. Two new series of five phenyl rings based polar HSLCs have been designed and synthesized. Solution state photoisomerization of the synthesized materials was investigated thoroughly via UV-visible and 1 H NMR spectroscopic techniques, whereas solid-state photochromic behavior was elucidated via physical color change of the materials, solid-state UV-visible study, powder XRD, and FE-SEM techniques. The materials exhibited decent photochromic behavior for different potential applications. The thermal phase behavior of the superstructural assembly has been characterized via polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and temperature-dependent small and wide-angle X-ray scattering (SAXS/WAXS) studies. Depending upon the length of the terminal alkyl chain, nematic (N) and partially bilayer smectic A (SmAd ) phases were observed. DFT calculations revealed the favorable anti-parallel arrangement of the polar molecules that substantiate the formation of SmAd phase.

6.
Soft Matter ; 16(32): 7556-7561, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32706008

ABSTRACT

Many bent-core nematic liquid crystals exhibit unusual physical properties due to the presence of smectic clusters, known as "cybotactic" clusters, in the nematic phase. Here, we investigate the effect of these clusters on the complex shear modulus (G*(ω)) of two asymmetric bent-core liquid crystals using a microrheological technique. The compound with a shorter hydrocarbon chain (8OCH3) exhibits only a nematic (N) phase whereas the compound with a longer chain (16OCH3) exhibits both nematic (N) and smectic-A (SmA) phases. The rheological results are correlated with the measurements of curvature elastic constants. Our results show that the directional shear modulus of 16OCH3, just above the SmA to N phase transition temperature, is strikingly different than that of 8OCH3, owing to the smectic clusters. An approximate size of the clusters is estimated using a simple model. Therefore, microrheological studies on bent-core nematic liquid crystals are very useful in extracting information about underlying smectic clusters.

7.
Chemistry ; 26(26): 5859-5871, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32083772

ABSTRACT

Recently, an unprecedented observation of polar order, thermochromic behavior, and exotic mesophases in new chiral, bent-shaped systems with a -CH3 moiety placed at the transverse position of the central core was reported. Herein, a homologous series of compounds with even-numbered carbon chains from n=4 to 18 were synthesized, in which -Cl was substituted for -CH3 at the kink position and a drastic modification in the phase structure of the bent-shaped molecule was observed. An unusual stabilization of the cubic blue phase (BP) over a wide range of 16.4 °C has been witnessed. Two homologues in this series (1-12 and 1-14) exhibit an interesting phase sequence consisting of BPI/II, chiral nematic, twist grain boundary, smectic A, and smectic X (SmX) phases. The higher homologues (1-16 and 1-18) stabilize the SmX phase enantiotropically over the entire temperature range. Crystal structure analysis confirmed the bent molecular architecture, with a bent angle of 148°, and revealed the presence of two different molecular conformations in an asymmetric unit of compound 1-4. A DFT study corroborated that the -Cl moiety at the central core of the molecule led to an increase in the dipole moment along the transverse direction, which, in turn, facilitated the unusual stabilization of frustrated structures. Crystal polymorphism has been evidenced in three homologues (1-10, 1-12, and 1-14) of the series. On the application of mechanical pressure through grinding, compound 1-10 transformed from a bright yellow crystalline solid to a dark orange-green amorphous solid, which reversed upon dropwise addition of dichloromethane, indicating reversible mechanochromism in this class of compounds. In addition, excellent thermochromic behavior has been observed for compound 1-10 with a controlled temperature-color combination.

8.
ACS Omega ; 4(4): 7711-7722, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459861

ABSTRACT

We report here the synthesis and thermotropic properties of novel short-core hockey stick-shaped liquid crystalline molecules based on the 1,3,4-thiadiazole core. Polar switching behavior is observed in the cybotactic nematic and smectic mesophases for the bent-core thiadiazole derivatives. The presence of the lateral methoxy moiety in the outer phenyl ring of the four-ring molecules facilitates the formation of spontaneous ordering in the nematic phase observed via X-ray diffraction measurements. Anomalous temperature dependence of spontaneous polarization on cooling is explained by the possible antiferroelectric packing of the molecules that require higher electric field for switching. The compounds exhibited a strong absorption band at ∼356 nm and a blue emission band at ∼445 nm with a good quantum yield of φf ∼0.39. The mega Stokes shift is observed and depends on the nature of the solvent.

9.
J Phys Chem B ; 123(20): 4443-4451, 2019 May 23.
Article in English | MEDLINE | ID: mdl-31042387

ABSTRACT

Herein, we report a new type of azobenzene-based unsymmetrical bent-core molecules exhibiting photoswitchability in the liquid crystalline state, solid state, and solution state and in mixture upon UV irradiation and intense visible light. The compounds exhibited solid-state photochromism upon exposure to UV light, whereas in liquid crystalline state, reversible phase transitions were observed via both UV irradiation and intense visible light exposure. Crystal structure analysis reveals the basic structural understanding such as nonplanar bent molecular shape, antiparallel arrangement of the polar bent molecules, intra- and intermolecular hydrogen bonding, and different π-π interactions and interdigitation of long alkyl chains. The compounds are also found to act as supergelator toward various organic solvents. Hence, this is an excellent example of such potential bent-shaped liquid crystals that promise an immense perspective for device applications such as optical storage, molecular switches, etc.

10.
Chem Commun (Camb) ; 54(28): 3452-3455, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29557481

ABSTRACT

A new approach accompanied by superstructural frustration is reported. By attaching a cholesterol moiety directly to the central bent-core system it displayed exotic BPIII, BPII/I, Ncyb*, TGBA, SmAPA, SmA and SmX phases as shown by X-ray scattering results. While higher homologues of the series exhibited spontaneous formation of polar order (Ps ∼ 61 nC cm-2) upon applied voltage, the lower homologues showed thermochromic behaviour which can also be trapped via temperature quenching.

11.
Chemphyschem ; 16(13): 2739-2744, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26224149

ABSTRACT

We report the synthesis and characterization of a new class of achiral three-ring bent-core compounds with an amide and ester linkage at the molecular bend, which are shown to exhibit nematic/phases in wide temperature ranges around room temperature (RT) and undulated SmC phases below RT. In contrast to previous studies, the compounds reported in this Communication show a true RT nematic phase with fluid physical appearance. They show strong photoluminescence in the mesophase and are found to display a one-dimensional array of intermolecular hydrogen bonding. Furthermore, the nematic phases exhibited by these compounds show a good homeotropic alignment that can be exploited in applications such as optics and sensing. Considering the scarcity of bent-core materials exhibiting an RT nematic mesophase, this new class of materials is promising.

12.
Beilstein J Org Chem ; 9: 26-35, 2013.
Article in English | MEDLINE | ID: mdl-23400045

ABSTRACT

Non-symmetrically substituted four-ring achiral bent-core compounds with polar substituents, i.e.., chloro in the bent or transverse direction in the central core and cyano in the lateral direction at one terminal end of the molecule, are designed and synthesized. These molecules possess an alkoxy chain attached at only one end of the bent-core molecule. The molecular structure characterization is consistent with data from elemental and spectroscopic analysis. The materials thermal behaviour and phase characterization have been investigated by differential scanning calorimetry and polarizing microscopy. All the compounds exhibit a wide-ranging monotropic nematic phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...