Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 271(Pt 2): 132714, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815937

ABSTRACT

OBJECTIVES: The study aimed to identify a quantitative signature of circulating small non-coding RNAs (sncRNAs) as a biomarker for pulmonary tuberculosis disease (active-TB/ATB) and explore their regulatory roles in host-pathogen interactions and disease progression. METHODS: We conducted a cross-sectional study recruiting subjects diagnosed with active-TB (drug-sensitive and drug-resistant) and healthy controls. Sera samples were collected and utilized for preparing small RNA libraries. Quantitative patterns of circulating sncRNAs (miRNAs, piRNAs and tRFs) were identified via high-throughput sequencing and DeSeq2 analysis and validated in independent active-TB cohorts. Functional knockdown for two selected miRNAs were also performed. RESULTS: A diagnostic signature of four sncRNAs for both drug-sensitive and drug-resistant active-TB cases was validated, exhibiting an AUC of 0.96 (95% CI: 0.937-0.996, p < 0.001) with 86.7% sensitivity (95% CI: 0.775-0.932) and 91.7% specificity (95% CI: 0.730-0.990) in ROC analysis. Functional knockdown demonstrated regulatory roles of hsa-miR-223-5p and hsa-miR-10b-5p in Mycobacterium tuberculosis (Mtb) growth and pro-inflammatory cytokine expression (IL-6 and IL-8). CONCLUSION: The study identified a diagnostic tool utilizing a signature of four sncRNAs with high specificity and sensitivity, enhancing our understanding of sncRNAs as ATB diagnostic biomarker. Additionally, hsa-miR-223-5p and hsa-miR-10b-5p demonstrated potential roles in Mtb pathogenesis and host-response to infection.

2.
FASEB J ; 37(11): e23235, 2023 11.
Article in English | MEDLINE | ID: mdl-37819580

ABSTRACT

Metabolic pathways and proteins responsible for maintaining mitochondrial dynamics and homeostasis in the Plasmodium parasite, the causative agent of malaria, remain to be elucidated. Here, we identified and functionally characterized a novel OPA3-like domain-containing protein in P. falciparum (PfOPA3). We show that PfOPA3 is expressed in the intraerythrocytic stages of the parasite and localizes to the mitochondria. Inducible knock-down of PfOPA3 using GlmS ribozyme hindered the normal intraerythrocytic cycle of the parasites; specifically, PfOPA3-iKD disrupted parasite development as well as parasite division and segregation at schizont stages, which resulted in a drastic reduction in the number of merozoites progenies. Parasites lacking PfOPA3 show severe defects in the development of functional mitochondria; the mitochondria showed reduced activity of mtETC but not ATP synthesis, as evidenced by reduced activity of complex III of the mtETC, and increased sensitivity for drugs targeting DHODH as well as complex III, but not to the drugs targeting complex V. Further, PfOPA3 downregulation leads to reduction in the level of mitochondrial proton transport uncoupling protein (PfUCP) to compensate reduced activity of complex III and maintain proton efflux across the inner membrane. The reduced activity of DHODH, which is responsible for pyrimidine biosynthesis required for nuclear DNA synthesis, resulted in a significant reduction in parasite nuclear division and generation of progeny. In conclusion, we show that PfOPA3 is essential for the functioning of mtETC and homeostasis required for the development of functional mitochondria as well as for parasite segregation, and thus PfOPA3 is crucial for parasite survival during blood stages.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Parasites/metabolism , Dihydroorotate Dehydrogenase , Electron Transport Complex III/metabolism , Protons , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Malaria, Falciparum/metabolism , Mitochondria/metabolism , Homeostasis , Cell Proliferation , Erythrocytes/metabolism
3.
ACS Omega ; 8(41): 38506-38523, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867646

ABSTRACT

Phylum apicomplexan consists of parasites, such as Plasmodium and Toxoplasma. These obligate intracellular parasites enter host cells via an energy-dependent process using specialized machinery, called the glideosome. In the present study, we used Plasmodium falciparum GAP50, a glideosome-associated protein, as a target to screen 951 different compounds from diverse chemical libraries. Using different screening methods, eight compounds (Hayatinine, Curine, MMV689758 (Bedaquiline), MMV1634402 (Brilacidin), and MMV688271, MMV782353, MMV642550, and USINB4-124-8) were identified, which showed promising binding affinity (KD < 75 µM), along with submicromolar range antiparasitic efficacy and selectivity index > 100 fold for malaria parasite. These eight compounds were effective against Chloroquine-resistant PfINDO and Artemisinin-resistant PfCam3.1R359T strains. Studies on the effect of these compounds at asexual blood stages showed that these eight compounds act differently at different developmental stages, indicating the binding of these compounds to other Plasmodium proteins, in addition to PfGAP50. We further studied the effects of compounds (Bedaquiline and USINB4-124-8) in an in vivoPlasmodium berghei mouse model of malaria. Importantly, the oral delivery of Bedaquiline (50 mg/kg b. wt.) showed substantial suppression of parasitemia, and three out of seven mice were cured of the infection. Thus, our study provides new scaffolds for the development of antimalarials that can act at multiple Plasmodium lifecycle stages.

4.
Cell Rep ; 42(4): 112251, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37015228

ABSTRACT

Phospholipid metabolism is crucial for membrane biogenesis and homeostasis of Plasmodium falciparum. To generate such phospholipids, the parasite extensively scavenges, recycles, and reassembles host lipids. P. falciparum possesses an unusually large number of lysophospholipases, whose roles and importance remain to be elucidated. Here, we functionally characterize one P. falciparum lysophospholipase, PfLPL3, to reveal its key role in parasite propagation during asexual blood stages. PfLPL3 displays a dynamic localization throughout asexual stages, mainly localizing in the host-parasite interface. Inducible knockdown of PfLPL3 disrupts parasite development from trophozoites to schizont, inducing a drastic reduction in merozoite progenies. Detailed lipidomic analyses show that PfLPL3 generates fatty acids from scavenged host lipids to generate neutral lipids. These are then timely mobilized to allow schizogony and merozoite formation. We then identify inhibitors of PfLPL3 from Medicine for Malaria Venture (MMV) with potent antimalarial activity, which could also serve as pertinent chemical tools to study parasite lipid synthesis.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Plasmodium falciparum , Parasites/metabolism , Fatty Acids/metabolism , Lysophospholipase/metabolism , Malaria, Falciparum/parasitology , Erythrocytes/parasitology , Protozoan Proteins/metabolism
5.
Biochem J ; 480(1): 25-39, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36511651

ABSTRACT

Proteins associated with ubiquitin-proteasome system (UPS) are potential drug targets in the malaria parasite. The ubiquitination and deubiquitination are key regulatory processes for the functioning of UPS. In this study, we have characterized the biochemical and functional role of a novel ubiquitin-specific protease (USP) domain-containing protein of the human malaria parasite Plasmodium falciparum (PfUSP). We have shown that the PfUSP is an active deubiquitinase associated with parasite endoplasmic reticulum (ER). Selection linked integration (SLI) method for C-terminal tagging and GlmS-ribozyme mediated inducible knock-down (iKD) of PfUSP was utilized to assess its functional role. Inducible knockdown of PfUSP resulted in a remarkable reduction in parasite growth and multiplication; specifically, PfUSP-iKD disrupted ER morphology and development, blocked the development of healthy schizonts, and hindered proper merozoite development. PfUSP-iKD caused increased ubiquitylation of specific proteins, disrupted organelle homeostasis and reduced parasite survival. Since the mode of action of artemisinin and the artemisinin-resistance are shown to be associated with the proteasome machinery, we analyzed the effect of dihydroartemisinin (DHA) on PfUSP-iKD parasites. Importantly, the PfUSP-knocked-down parasite showed increased sensitivity to dihydroartemisinin (DHA), whereas no change in chloroquine sensitivity was observed, suggesting a role of PfUSP in combating artemisinin-induced cellular stress. Together, the results show that Plasmodium PfUSP is an essential protease for parasite survival, and its inhibition increases the efficacy of artemisinin-based drugs. Therefore, PfUSP can be targeted to develop novel scaffolds for developing new antimalarials to combat artemisinin resistance.


Subject(s)
Antimalarials , Artemisinins , Malaria , Parasites , Humans , Animals , Plasmodium falciparum/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/pharmacology , Artemisinins/pharmacology , Artemisinins/metabolism , Antimalarials/chemistry , Ubiquitin/genetics , Ubiquitin/metabolism , Drug Resistance/genetics
6.
FASEB Bioadv ; 4(10): 662-674, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36238365

ABSTRACT

Hemoglobin degradation is crucial for the growth and survival of Plasmodium falciparum in human erythrocytes. Although the process of Hb degradation has been studied in detail, the mechanisms of Hb uptake remain ambiguous to date. Here, we characterized Heme Detoxification Protein (PfHDP); a protein localized in the parasitophorus vacuole, parasite food vacuole, and infected erythrocyte cytosol for its role in Hb uptake. Immunoprecipitation of PfHDP-GFP fusion protein from a transgenic line using GFP trap beads showed the association of PfHDP with Hb as well as with the members of PTEX translocon complex. Association of PfHDP with Hb or Pfexp-2, a component of translocon complex was confirmed by protein-protein interaction and immunolocalization tools. Based on these associations, we studied the role of PfHDP in Hb uptake using the PfHDP-HA-GlmS transgenic parasites line. PfHDP knockdown significantly reduced the Hb uptake in these transgenic parasites in comparison to the wild-type parasites. Morphological analysis of PfHDP-HA-GlmS transgenic parasites in the presence of GlcN showed food vacuole abnormalities and parasite stress, thereby causing a growth defect in the development of these parasites. Transient knockdown of a member of translocon complex, PfHSP101 in HSP101-DDDHA parasites also showed a decreased uptake of Hb inside the parasite. Together, these results advocate an interaction between PfHDP and the translocon complex at the parasitophorus vacuole membrane and also suggest a role for PfHDP in the uptake of Hb and parasite development. The study thus reveals new insights into the function of PfHDP, making it an extremely important target for developing new antimalarials.

7.
PLoS Pathog ; 18(10): e1010932, 2022 10.
Article in English | MEDLINE | ID: mdl-36306288

ABSTRACT

Members of the HtrA family of serine proteases are known to play roles in mitochondrial homeostasis as well as in programmed cell death. Mitochondrial homeostasis and metabolism are crucial for the survival and propagation of the malaria parasite within the host. Here we have functionally characterized a Plasmodium falciparum HtrA2 (PfHtrA2) protein, which harbours trypsin-like protease activity that can be inhibited by its specific inhibitor, ucf-101. A transgenic parasite line was generated, using the HA-glmS C-terminal tagging approach, for localization as well as for inducible knock-down of PfHtrA2. The PfHtrA2 was localized in the parasite mitochondrion during the asexual life cycle. Genetic ablation of PfHtrA2 caused significant parasite growth inhibition, decreased replication of mtDNA, increased mitochondrial ROS production, caused mitochondrial fission/fragmentation, and hindered parasite development. However, the ucf-101 treatment did not affect the parasite growth, suggesting the non-protease/chaperone role of PfHtrA2 in the parasite. Under cellular stress conditions, inhibition of PfHtrA2 by ucf-101 reduced activation of the caspase-like protease as well as parasite cell death, suggesting the involvement of protease activity of PfHtrA2 in apoptosis-like cell death in the parasite. Under these cellular stress conditions, the PfHtrA2 gets processed but remains localized in the mitochondrion, suggesting that it acts within the mitochondrion by cleaving intra-mitochondrial substrate(s). This was further supported by trans-expression of PfHtrA2 protease domain in the parasite cytosol, which was unable to induce any cell death in the parasite. Overall, we show the specific roles of PfHtrA2 in maintaining mitochondrial homeostasis as well as in regulating stress-induced cell death.


Subject(s)
Malaria , Parasites , Animals , Humans , High-Temperature Requirement A Serine Peptidase 2/genetics , High-Temperature Requirement A Serine Peptidase 2/metabolism , Parasites/metabolism , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Apoptosis , Cell Death , Homeostasis , Malaria/metabolism
8.
Mitochondrion ; 65: 124-138, 2022 07.
Article in English | MEDLINE | ID: mdl-35623558

ABSTRACT

The malaria parasite completes the asexual cycle inside the host erythrocyte, which requires extensive membrane biogenesis for its development and multiplication. Metabolic pathways for the synthesis of membrane phospholipids (PL), including phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS), are crucial for parasite survival. Here, we have studied the P. falciparum enzyme responsible for PS synthesis, Phosphatidylserine synthase (PfPSS), GFP targeting approach confirmed it to be localized in the parasite ER as well as in ER-protrusions. Detailed high resolution microscopy, using these transgenic parasites expressing PfPSS-GFP, redefined the dynamics of ER during the intraerythrocytic life cycle and its association with the mitochondria. We report for the first time presence of ER-mitochondria contact (ERMC) in Plasmodium; ERMC is formed by PfPSS containing ER-protrusions, which associate with the mitochondria surface throughout the parasite growth cycle. Further, ERMC is found to be stable and refractory to ER and mitochondrial stresses, suggesting that it is formed through strong tethering complexes. PfPSS was found to interact with other major key enzyme involved in PL synthesis, choline/Etn-phosphotransferase (CEPT), which suggest that ER is the major site for PL biosynthesis. Overall, this study defines the morphological organisation of ERMC which mediates PL synthesis/transport in the Plasmodium.


Subject(s)
Phospholipids , Plasmodium falciparum , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/metabolism , Erythrocytes/metabolism , Erythrocytes/parasitology , Mitochondria/metabolism , Plasmodium falciparum/metabolism
9.
Microbiol Spectr ; 10(2): e0244521, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35416716

ABSTRACT

Diagnosis of latent tuberculosis infection (LTBI) using biomarkers in order to identify the risk of progressing to active TB and therefore predicting a preventive therapy has been the main bottleneck in eradication of tuberculosis. We compared two assays for the diagnosis of LTBI: transcript signatures and interferon gamma release assay (IGRA), among household contacts (HHCs) in a high tuberculosis-burden population. HHCs of active TB cases were recruited for our study; these were confirmed to be clinically negative for active TB disease. Eighty HHCs were screened by IGRA using QuantiFERON-TB Gold Plus (QFT-Plus) to identify LTBI and uninfected cohorts; further, quantitative levels of transcript for selected six genes (TNFRSF10C, ASUN, NEMF, FCGR1B, GBP1, and GBP5) were determined. Machine learning (ML) was used to construct models of different gene combinations, with a view to identify hidden but significant underlying patterns of their transcript levels. Forty-three HHCs were found to be IGRA positive (LTBI) and thirty-seven were IGRA negative (uninfected). FCGR1B, GBP1, and GBP5 transcripts differentiated LTBI from uninfected among HHCs using Livak method. ML and ROC (Receiver Operator Characteristic) analysis validated this transcript signature to have a specificity of 72.7%. In this study, we compared a quantitative transcript signature with IGRA to assess the diagnostic ability of the two, for detection of LTBI cases among HHCs of a high-TB burden population; we concluded that a three gene (FCGR1B, GBP1, and GBP5) transcript signature can be used as a biomarker for rapid screening. IMPORTANCE The study compares potential of transcript signature and IGRA to diagnose LTBI. It is first of its kind study to screen household contacts (HHCs) in high TB burden area of India. A transcript signature (FCGR1B, GBP1, & GBP5) is identified as potential biomarker for LTBI. These results can lead to development of point-of-care (POC) like device for LTBI screening in a high TB burdened area.


Subject(s)
Latent Tuberculosis , Tuberculosis , Humans , Interferon-gamma Release Tests/methods , Latent Tuberculosis/diagnosis , Latent Tuberculosis/epidemiology , Mass Screening , Tuberculin Test/methods , Tuberculosis/diagnosis
10.
Pathogens ; 10(11)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34832620

ABSTRACT

Reduced sensitivity of the human malaria parasite, Plasmodium falciparum, to Artemisinin and its derivatives (ARTs) threatens the global efforts towards eliminating malaria. ARTs have been shown to cause ubiquitous cellular and genetic insults, which results in the activation of the unfolded protein response (UPR) pathways. The UPR restores protein homeostasis, which otherwise would be toxic to cellular survival. Here, we interrogated the role of DNA-damage inducible protein 1 (PfDdi1), a unique proteasome-interacting retropepsin in mediating the actions of the ARTs. We demonstrate that PfDdi1 is an active A2 family protease that hydrolyzes ubiquitinated proteasome substrates. Treatment of P. falciparum parasites with ARTs leads to the accumulation of ubiquitinated proteins in the parasites and blocks the destruction of ubiquitinated proteins by inhibiting the PfDdi1 protease activity. Besides, whereas the PfDdi1 is predominantly localized in the cytoplasm, exposure of the parasites to ARTs leads to DNA fragmentation and increased recruitment of the PfDdi1 into the nucleus. Furthermore, we show that Ddi1 knock-out Saccharomycescerevisiae cells are more susceptible to ARTs and the PfDdI1 protein robustly restores the corresponding functions in the knock-out cells. Together, these results show that ARTs act in multiple ways; by inducing DNA and protein damage and might be impairing the damage recovery by inhibiting the activity of PfDdi1, an essential ubiquitin-proteasome retropepsin.

11.
BMC Biol ; 19(1): 159, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34380472

ABSTRACT

BACKGROUND: Plasmodium falciparum is the pathogen responsible for the most devastating form of human malaria. As it replicates asexually in the erythrocytes of its human host, the parasite feeds on haemoglobin uptaken from these cells. Heme, a toxic by-product of haemoglobin utilization by the parasite, is neutralized into inert hemozoin in the food vacuole of the parasite. Lipid homeostasis and phospholipid metabolism are crucial for this process, as well as for the parasite's survival and propagation within the host. P. falciparum harbours a uniquely large family of phospholipases, which are suggested to play key roles in lipid metabolism and utilization. RESULTS: Here, we show that one of the parasite phospholipase (P. falciparum lysophospholipase, PfLPL1) plays an essential role in lipid homeostasis linked with the haemoglobin degradation and heme conversion pathway. Fluorescence tagging showed that the PfLPL1 in infected blood cells localizes to dynamic vesicular structures that traffic from the host-parasite interface at the parasite periphery, through the cytosol, to get incorporated into a large vesicular lipid rich body next to the food-vacuole. PfLPL1 is shown to harbour enzymatic activity to catabolize phospholipids, and its transient downregulation in the parasite caused a significant reduction of neutral lipids in the food vacuole-associated lipid bodies. This hindered the conversion of heme, originating from host haemoglobin, into the hemozoin, and disrupted the parasite development cycle and parasite growth. Detailed lipidomic analyses of inducible knock-down parasites deciphered the functional role of PfLPL1 in generation of neutral lipid through recycling of phospholipids. Further, exogenous fatty-acids were able to complement downregulation of PfLPL1 to rescue the parasite growth as well as restore hemozoin levels. CONCLUSIONS: We found that the transient downregulation of PfLPL1 in the parasite disrupted lipid homeostasis and caused a reduction in neutral lipids essentially required for heme to hemozoin conversion. Our study suggests a crucial link between phospholipid catabolism and generation of neutral lipids (TAGs) with the host haemoglobin degradation pathway.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Erythrocytes , Heme , Hemeproteins , Humans , Phospholipases , Phospholipids
12.
PLoS Pathog ; 17(7): e1009750, 2021 07.
Article in English | MEDLINE | ID: mdl-34324609

ABSTRACT

The human malaria parasite, Plasmodium falciparum possesses unique gliding machinery referred to as the glideosome that powers its entry into the insect and vertebrate hosts. Several parasite proteins including Photosensitized INA-labelled protein 1 (PhIL1) have been shown to associate with glideosome machinery. Here we describe a novel PhIL1 associated protein complex that co-exists with the glideosome motor complex in the inner membrane complex of the merozoite. Using an experimental genetics approach, we characterized the role(s) of three proteins associated with PhIL1: a glideosome associated protein- PfGAPM2, an IMC structural protein- PfALV5, and an uncharacterized protein-referred here as PfPhIP (PhIL1 Interacting Protein). Parasites lacking PfPhIP or PfGAPM2 were unable to invade host RBCs. Additionally, the downregulation of PfPhIP resulted in significant defects in merozoite segmentation. Furthermore, the PfPhIP and PfGAPM2 depleted parasites showed abrogation of reorientation/gliding. However, initial attachment with host RBCs was not affected in these parasites. Together, the data presented here show that proteins of the PhIL1-associated complex play an important role in the orientation of P. falciparum merozoites following initial attachment, which is crucial for the formation of a tight junction and hence invasion of host erythrocytes.


Subject(s)
Erythrocytes/parasitology , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Merozoites/metabolism , Protozoan Proteins/metabolism , Humans
13.
Biochem J ; 478(18): 3429-3444, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34133721

ABSTRACT

Phospholipid synthesis is crucial for membrane proliferation in malaria parasites during the entire cycle in the host cell. The major phospholipid of parasite membranes, phosphatidylcholine (PC), is mainly synthesized through the Kennedy pathway. The phosphocholine required for this synthetic pathway is generated by phosphorylation of choline derived from the catabolism of the lyso-phosphatidylcholine (LPC) scavenged from the host milieu. Here we have characterized a Plasmodium falciparum lysophospholipase (PfLPL20) which showed enzymatic activity on LPC substrate to generate choline. Using GFP- targeting approach, PfLPL20 was localized in vesicular structures associated with the neutral lipid storage bodies present juxtaposed to the food-vacuole. The C-terminal tagged glmS mediated inducible knock-down of PfLPL20 caused transient hindrance in the parasite development, however, the parasites were able to multiply efficiently, suggesting that PfLPL20 is not essential for the parasite. However, in PfLPL20 depleted parasites, transcript levels of enzyme of SDPM pathway (Serine Decarboxylase-Phosphoethanolamine Methyltransferase) were altered along with up-regulation of phosphocholine and SAM levels; these results show up-regulation of alternate pathway to generate the phosphocholine required for PC synthesis through the Kennedy pathway. Our study highlights the presence of alternate pathways for lipid homeostasis/membrane-biogenesis in the parasite; these data could be useful to design future therapeutic approaches targeting phospholipid metabolism in the parasite.


Subject(s)
Erythrocytes/metabolism , Lysophospholipase/genetics , Phosphatidylcholines/biosynthesis , Phosphorylcholine/metabolism , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Choline/metabolism , Erythrocytes/parasitology , Gene Expression Regulation , Gene Knockdown Techniques , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeostasis/genetics , Humans , Life Cycle Stages/genetics , Lipid Metabolism/genetics , Lysophosphatidylcholines/metabolism , Lysophospholipase/deficiency , Methyltransferases/genetics , Methyltransferases/metabolism , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , S-Adenosylmethionine/metabolism , Serine/metabolism
14.
FEBS Open Bio ; 11(7): 1921-1929, 2021 07.
Article in English | MEDLINE | ID: mdl-33934569

ABSTRACT

Post-translational modifications, especially reversible phosphorylation, are among the most common mechanisms that regulate protein function and biological processes in Plasmodium species. Of the Plasmodium phosphatases, phosphatase of regenerating liver (PfPRL) is secreted and is an essential phosphatase. Here, we expressed PfPRL in a heterologous expression system, and then purified and characterized its phosphatase activity. We found that Novartis_003209, a previously identified inhibitor, inhibited the PfPRL phosphatase activity of recombinant PfPRL and blocked in vitro parasite growth in a dose-dependent manner. Further, in silico docking analysis of Novartis_003209 with all four P. falciparum tyrosine phosphatases (PTP) demonstrated that Novartis_003209 is a Plasmodium PTP inhibitor. Overall, our results identify a scaffold as a potential starting point to design a PTP-specific inhibitor.


Subject(s)
Biological Phenomena , Parasites , Animals , Parasites/metabolism , Plasmodium falciparum , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Tyrosine/metabolism
15.
Eur J Med Chem ; 220: 113454, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33901900

ABSTRACT

Artemisinin-based combination therapies (ACTs) have been able to reduce the clinical and pathological malaria cases in endemic areas around the globe. However, recent reports have shown a progressive decline in malaria parasite clearance in South-east Asia after ACT treatment, thus envisaging a need for new artemisinin (ART) derivatives and combinations. To address the emergence of drug resistance to current antimalarials, here we report the synthesis of artemisinin-peptidyl vinyl phosphonate hybrid molecules that show superior efficacy than artemisinin alone against chloroquine-resistant as well as multidrug-resistant Plasmodium falciparum strains with EC50 in pico-molar ranges. Further, the compounds effectively inhibited the survival of ring-stage parasite for laboratory-adapted artemisinin-resistant parasite lines as compared to artemisinin. These hybrid molecules showed complete parasite clearance in vivo using P. berghei mouse malaria model in comparison to artemisinin alone. Studies on the mode of action of hybrid molecules suggested that these artemisinin-peptidyl vinyl phosphonate hybrid molecules possessed dual activities: inhibited falcipain-2 (FP-2) activity, a P. falciparum cysteine protease involved in hemoglobin degradation, and also blocked the hemozoin formation in the food-vacuole, a step earlier shown to be blocked by artemisinin. Since these hybrid molecules blocked multiple steps of a pathway and showed synergistic efficacies, we believe that these lead compounds can be developed as effective antimalarials to prevent the spread of resistance to current antimalarials.


Subject(s)
Antimalarials/pharmacology , Drug Resistance, Multiple/drug effects , Malaria/drug therapy , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Artemisinins/chemical synthesis , Artemisinins/chemistry , Artemisinins/pharmacology , Cysteine Endopeptidases/metabolism , Dose-Response Relationship, Drug , Heme/antagonists & inhibitors , Heme/metabolism , Malaria/metabolism , Molecular Structure , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Organophosphonates/pharmacology , Parasitic Sensitivity Tests , Peptides/chemical synthesis , Peptides/chemistry , Peptides/pharmacology , Polymerization/drug effects , Structure-Activity Relationship , Vinyl Compounds/chemical synthesis , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology
16.
Bioorg Chem ; 108: 104514, 2021 03.
Article in English | MEDLINE | ID: mdl-33280833

ABSTRACT

Targeting Falcipain-2 (FP2) for the development of antimalarials is a promising and established concept in antimalarial drug discovery and development. FP2, a member of papain-family cysteine protease of the malaria parasite Plasmodium falciparum holds an important role in hemoglobin degradation pathway. A new series of quinoline carboxamide-based compounds was designed, synthesized and evaluated for antimalarial activity. We integrated molecular hybridization strategy with in-silico drug design to develop FP2 inhibitors. In-vitro results of FP2 inhibition by Qs17, Qs18, Qs20 and Qs21 were found to be in low micromolar range with IC50 4.78, 7.37, 2.14 and 2.64 µM, respectively. Among the 25 synthesized compounds, four compounds showed significant antimalarial activities. These compounds also depicted morphological and food-vacuole abnormalities much better than that of E-64, an established FP2 inhibitor. Overall these aromatic substituted quinoline carboxamides can serve as promising leads for the development of novel antimalarial agents.


Subject(s)
Antimalarials/pharmacology , Cysteine Endopeptidases/metabolism , Drug Design , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Dose-Response Relationship, Drug , Malaria, Falciparum/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Plasmodium falciparum/growth & development , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
17.
ACS Omega ; 5(45): 29025-29037, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33225134

ABSTRACT

Racemic and enantioselective syntheses of γ-phenyl-γ-amino vinyl phosphonates and sulfones have been achieved using Horner-Wadsworth-Emmons olefination of trityl protected α-phenyl-α-amino aldehydes with tetraethyl methylenediphosphonate and diethyl ((phenylsulfonyl)methyl)phosphonate, respectively, without any racemization. The present strategy has also been successfully applied to the synthesis of peptidyl vinyl phosphonate and peptidyl vinyl sulfone derivatives as potential cysteine protease inhibitors of Chagas disease, K11002, with 100% de. The developed synthetic protocol was further utilized to synthesize hybrid molecules consisting of artemisinin as an inhibitor of major cysteine protease falcipain-2 present in the food vacuole of the malarial parasite. The synthesized artemisinin-dipeptidyl vinyl sulfone hybrid compounds showed effective in vitro inhibition of falcipain-2 and potent parasiticidal efficacies against Plasmodium falciparum in nanomolar ranges. Overall, the developed synthetic protocol could be effectively utilized to design cysteine protease inhibitors not only as novel antimalarial compounds but also to be involved in other life-threatening diseases.

18.
Bioorg Med Chem ; 28(1): 115155, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31744777

ABSTRACT

Falcipains (FPs), cysteine proteases in the malarial parasite, are emerging as the promising antimalarial drug targets. In order to identify novel FP inhibitors, we generated a pharmacophore derived from the reported co-crystal structures of inhibitors of Plasmodium falciparum Falcipain-3 to screen the ZINC library. Further, the filters were applied for dock score, drug-like characters, and clustering of similar structures. Sixteen molecules were purchased and subject to in vitro enzyme (FP-2 and FP-3) inhibition assays. Two compounds showed in vitro inhibition of FP-2 and FP-3 at low µM concentration. The selectivity of the inhibitors can be explained based on the predicted interactions of the molecule in the active site. Further, the inhibitors were evaluated in a functional assay and were found to induce morphological changes in line with their mode of action arresting Plasmodium development. Compound 15 was most potent inhibitor identified in this study.


Subject(s)
Antimalarials/pharmacology , Cysteine Endopeptidases/metabolism , Enzyme Inhibitors/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Structure-Activity Relationship
19.
Infect Immun ; 88(2)2020 01 22.
Article in English | MEDLINE | ID: mdl-31712270

ABSTRACT

Cytoadherence-linked asexual gene 9 (Clag9), a conserved Plasmodium protein expressed during the asexual blood stages, is involved in the cytoadherence of infected red blood cells (RBCs) to the endothelial lining of blood vessels. Here, we show that Plasmodium falciparum Clag9 (PfClag9) is a component of the PfClag9-RhopH complex that is involved in merozoite binding to human erythrocytes. To characterize PfClag9, we expressed four fragments of PfClag9, encompassing the entire protein. Immunostaining analysis using anti-PfClag9 antibodies showed expression and localization of PfClag9 at the apical end of the merozoites. Mass spectrometric analysis of merozoite extracts after immunoprecipitation using anti-PfClag9 antibody identified P. falciparum rhoptry-associated protein 1 (PfRAP1), PfRAP2, PfRAP3, PfRhopH2, and PfRhopH3 as associated proteins. The identified rhoptry proteins were expressed, and their association with PfClag9 domains was assessed by using protein-protein interaction tools. We further showed that PfClag9 binds human RBCs by interacting with the glycophorin A-band 3 receptor-coreceptor complex. In agreement with its cellular localization, PfClag9 was strongly recognized by antibodies generated during natural infection. Mice immunized with the C-terminal domain of PfClag9 were partially protected against a subsequent challenge infection with Plasmodium berghei, further supporting a biological role of PfClag9 during natural infection. Taken together, these results provide direct evidence for the existence of a PfRhopH-Clag9 complex on the Plasmodium merozoite surface that binds to human RBCs.


Subject(s)
Cell Adhesion Molecules/immunology , Erythrocytes/immunology , Merozoites/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Humans , Malaria, Falciparum/immunology , Mice , Mice, Inbred BALB C , Plasmodium berghei/immunology , Protein Interaction Maps/immunology
20.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-31529106

ABSTRACT

Despite significant progress in apicomplexan genome sequencing and genomics, the current list of experimentally validated transcription factors (TFs) in these genomes is incomplete and mainly consists of AP2 family of proteins, with only a limited number of non-AP2 family TFs and transcription-associated co-factors (TcoFs). We have performed a systematic bioinformatics-aided prediction of TFs and TcoFs in apicomplexan genomes and developed the ApicoTFdb database which consists of experimentally validated as well as computationally predicted TFs and TcoFs in 14 apicomplexan species. The predicted TFs are manually curated to complement the existing annotations. The current version of the database includes 1292 TFs which includes experimentally validated and computationally predicted TFs, representing 20 distinct families across 14 apicomplexan species. The predictions include TFs of TUB, NAC, BSD, HTH, Cupin/Jumonji, winged helix and FHA family proteins, not reported earlier as TFs in the genomes. Apart from TFs, ApicoTFdb also classifies TcoFs into three main subclasses: TRs, CRRs and RNARs, representing 2491 TcoFs in 14 apicomplexan species, are analyzed in this study. The database is designed to integrate different tools for comparative analysis. All entries in the database are dynamically linked with other databases, literature reference, protein-protein interactions, pathways and annotations associated with each protein. ApicoTFdb will be useful to the researchers interested in less-studied gene regulatory mechanisms mediating the complex life cycle of the apicomplexan parasites. The database will aid in the discovery of novel drug targets to much needed combat the growing drug resistance in the parasites.


Subject(s)
Apicomplexa/genetics , Databases, Protein , Internet , Protozoan Proteins/genetics , Transcription Factors/genetics , Apicomplexa/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...