Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Discov ; 10(1): 62, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862506

ABSTRACT

Membrane budding, which underlies fundamental processes like endocytosis, intracellular trafficking, and viral infection, is thought to involve membrane coat-forming proteins, including the most observed clathrin, to form Ω-shape profiles and helix-forming proteins like dynamin to constrict Ω-profiles' pores and thus mediate fission. Challenging this fundamental concept, we report that polymerized clathrin is required for Ω-profiles' pore closure and that clathrin around Ω-profiles' base/pore region mediates pore constriction/closure in neuroendocrine chromaffin cells. Mathematical modeling suggests that clathrin polymerization at Ω-profiles' base/pore region generates forces from its intrinsically curved shape to constrict/close the pore. This new fission function may exert broader impacts than clathrin's well-known coat-forming function during clathrin (coat)-dependent endocytosis, because it underlies not only clathrin (coat)-dependent endocytosis, but also diverse endocytic modes, including ultrafast, fast, slow, bulk, and overshoot endocytosis previously considered clathrin (coat)-independent in chromaffin cells. It mediates kiss-and-run fusion (fusion pore closure) previously considered bona fide clathrin-independent, and limits the vesicular content release rate. Furthermore, analogous to results in chromaffin cells, we found that clathrin is essential for fast and slow endocytosis at hippocampal synapses where clathrin was previously considered dispensable, suggesting clathrin in mediating synaptic vesicle endocytosis and fission. These results suggest that clathrin and likely other intrinsically curved coat proteins are a new class of fission proteins underlying vesicle budding and fusion. The half-a-century concept and studies that attribute vesicle-coat contents' function to Ω-profile formation and classify budding as coat-protein (e.g., clathrin)-dependent or -independent may need to be re-defined and re-examined by considering clathrin's pivotal role in pore constriction/closure.

2.
Cancers (Basel) ; 13(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34359683

ABSTRACT

The overexpression of BRF2, a selective subunit of RNA polymerase III, has been shown to be crucial in the development of several types of cancers, including breast cancer and lung squamous cell carcinoma. Predominantly, BRF2 acts as a central redox-sensing transcription factor (TF) and is involved in rescuing oxidative stress (OS)-induced apoptosis. Here, we showed a novel link between BRF2 and the DNA damage response. Due to the lack of BRF2-specific inhibitors, through virtual screening and molecular dynamics simulation, we identified potential drug candidates that interfere with BRF2-TATA-binding Protein (TBP)-DNA complex interactions based on binding energy, intermolecular, and torsional energy parameters. We experimentally tested bexarotene as a potential BRF2 inhibitor. We found that bexarotene (Bex) treatment resulted in a dramatic decline in oxidative stress and Tert-butylhydroquinone (tBHQ)-induced levels of BRF2 and consequently led to a decrease in the cellular proliferation of cancer cells which may in part be due to the drug pretreatment-induced reduction of ROS generated by the oxidizing agent. Our data thus provide the first experimental evidence that BRF2 is a novel player in the DNA damage response pathway and that bexarotene can be used as a potential inhibitor to treat cancers with the specific elevation of oxidative stress.

3.
ACS Chem Biol ; 16(8): 1538-1545, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34181382

ABSTRACT

The stabilities of Ca2+-regulated ctenophore and coelenterate apo-photoproteins, apo-mnemiopsin (apo-Mne) and apo-aequorin (apo-Aeq), respectively, were compared biochemically, biophysically, and structurally. Despite high degrees of structural and functional conservation, drastic variations in stability and structural dynamics were found between the two proteins. Irreversible thermoinactivation experiments were performed upon incubation of apo-photoproteins at representative temperatures. The inactivation rate constants (kinact) at 50 °C were determined to be 0.001 and 0.004 min-1 for apo-Mne and apo-Aeq, respectively. Detailed analysis of the inactivation process suggests that the higher thermostability of apo-Mne is due to the higher activation energy (Ea) and subsequently higher values of ΔH* and ΔG* at a given temperature. According to molecular dynamics simulation studies, the higher hydrogen bond, electrostatic, and van der Waals energies in apo-Mne can validate the relationship between the thermal adaptation of apo-Mne and the energy barrier for the inactivation process. Our results show that favorable residues for protein thermostability such as hydrophobic, charged, and adopted α-helical structure residues are more frequent in the apo-Mne structure. Although the effect of acrylamide on fluorescence quenching suggests that the local flexibility in regions around Trp and Tyr residues of apo-Aeq is higher than that of apo-Mne, which results in it having a better ability to penetrate acrylamide molecules, the root-mean-square fluctuation of helix A in apo-Mne is higher than that in apo-Aeq. It seems that the greater flexibility of apo-Mne in these regions may be considered as a determining factor, affecting the thermal stability of apo-Mne through a balance between structural rigidity and flexibility.


Subject(s)
Cnidaria/chemistry , Ctenophora/chemistry , Luminescent Proteins/chemistry , Protein Stability , Animals , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Dynamics Simulation , Pliability , Protein Conformation , Thermodynamics
4.
Immunopharmacol Immunotoxicol ; 41(1): 25-31, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30621469

ABSTRACT

Background: Anthrax is a zoonotic disease caused by Bacillus anthracis and it can be deadly in 6 days. Considerable efforts have been conducted toward developing more effective veterinary and human anthrax vaccines because these common vaccines have several limitations. B. anthracis secretes a tripartite toxin, comprising protective antigen (PA), edema factor (EF), and lethal factor (LF). Several studies have shown important role of PA in protection of anthrax. LF and EF induce production of toxin neutralizing antibodies too. PA in fusion form with LF/EF has synergistic effects as a potential subunit vaccine. Methods: In this study, for the first time, a triple chimeric protein called ELP was modeled by fusing three different domains of anthrax toxic antigens, the N-terminal domains of EF and LF, and the C-terminal domain of PA as a high immunogenic antigen using Modeller 9.19 software. Immunogenicity of the ELP was assessed in guinea pigs using enzyme-linked immunosorbent assay (ELISA) test and MTT assay. Results: Theoretical studies and molecular dynamics (MD) simulation results suggest that the ELP model had acceptable quality and stability. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the purified ELP, its domains, and PA were matched with their molecular size and confirmed by western blotting analysis. In the immune guinea pigs, antibody was produced against all of the ELP domains. It was observed that ELP induced strong humoral response and could protect murine macrophage cell line (RAW 264.7 cells) against anthrax lethal toxin (LeTx). Conclusions: ELP chimeric antigen could be considered as a high immunogenic antigen.


Subject(s)
Anthrax Vaccines/immunology , Anthrax/prevention & control , Antibodies, Neutralizing/blood , Antigens, Bacterial/immunology , Bacillus anthracis/immunology , Bacterial Toxins/immunology , Models, Theoretical , Animals , Anthrax/immunology , Anthrax Vaccines/genetics , Anthrax Vaccines/toxicity , Antigens, Bacterial/genetics , Antigens, Bacterial/toxicity , Bacillus anthracis/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Guinea Pigs , Mice , Molecular Dynamics Simulation , Neutralization Tests , RAW 264.7 Cells , Software , Vaccines, Synthetic
5.
J Biomol Struct Dyn ; 37(14): 3686-3696, 2019 09.
Article in English | MEDLINE | ID: mdl-30241448

ABSTRACT

Single-domain antibodies also known as nanobodies are recombinant antigen-binding domains that correspond to the heavy-chain variable region of camelid antibodies. Previous experimental studies showed that the nanobodies have stable and active structures at high temperatures. In this study, the thermal stability and dynamics of nanobodies have been studied by employing molecular dynamics simulation at different temperatures. Variations in root mean square deviation, native contacts, and solvent-accessible surface area of the nanobodies during the simulation were calculated to analyze the effect of different temperatures on the overall conformation of the nanobody. Then, the thermostability mechanism of this protein was studied through calculation of dynamic cross-correlation matrix, principal component analyses, native contact analyses, and root mean square fluctuation. Our results manifest that the side chain conformation of some residues in the complementarity-determining region 3 (CDR3) and also the interaction between α-helix region of CDR3 and framework2 play a critical role to stabilize the protein at a high temperature. Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Single-Domain Antibodies/chemistry , Temperature , Hydrogen Bonding , Principal Component Analysis , Protein Interaction Maps , Protein Stability , Solvents/chemistry
6.
J Biol Chem ; 294(1): 20-27, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30420427

ABSTRACT

Bioluminescence of a variety of marine organisms, mostly cnidarians and ctenophores, is carried out by Ca2+-dependent photoproteins. The mechanism of light emission operates via the same reaction in both animal families. Despite numerous studies on the ctenophore photoprotein family, the detailed catalytic mechanism and arrangement of amino acid residues surrounding the chromophore in this family are a mystery. Here, we report the crystal structure of Cd2+-loaded apo-mnemiopsin1, a member of the ctenophore family, at 2.15 Å resolution and used quantum mechanics/molecular mechanics (QM/MM) to investigate its reaction mechanism. The simulations suggested that an Asp-156-Arg-39-Tyr-202 triad creates a hydrogen-bonded network to facilitate the transfer of a proton from the 2-hydroperoxy group of the chromophore coelenterazine to bulk solvent. We identified a water molecule in the coelenteramide-binding cavity that forms a hydrogen bond with the amide nitrogen atom of coelenteramide, which, in turn, is hydrogen-bonded via another water molecule to Tyr-131. This observation supports the hypothesis that the function of the coelenteramide-bound water molecule is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion, thereby triggering the bioluminescence reaction in the ctenophore photoprotein family.


Subject(s)
Ctenophora/chemistry , Luminescent Measurements , Luminescent Proteins/chemistry , Animals , Crystallography, X-Ray , Ctenophora/genetics , Hydrogen Bonding , Luminescent Proteins/genetics , Mutation
7.
Arch Biochem Biophys ; 634: 29-37, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28970088

ABSTRACT

As a Ca2+-regulated photoprotein, aequorin (Aeq) contains four EF-hand motifs, the second one lacks the standard sequence for Ca2+ coordination and doesn't bind to Ca2+. Here, we replaced this loop with a functional loop. According to structural studies, although the global stability of modified aequorin (4EFAeq) is higher than that of Aeq; increasing the local flexibility accompanied by internal structural rearrangements in 4EFAeq result in its penetrability to urea and acrylamide. A fast decay rate was observed for 4EFAeq. Assuming the presence of intermediate states in the luminescent reaction, this observation indicate that the loop replacement leads to the lowering of the half-life of intermediate states which results in increasing the rate of conformational switching of 4EFAeq to light emitting form. However, considerable reduction in initial luminescence intensity of 4EFAeq suggests that the number of functional complexes is reduced. Our findings demonstrate that the conformational effects of the second loop in Aeq elicit a delicate balance between local flexibility and global stability which may be considered as an important functional parameter in photoproteins. It was also concluded that evolutionary conservation of EF-hand ΙΙ in the current form is a consequence of priority of intensity to decay rate in bioluminescent organisms.


Subject(s)
Aequorin/chemistry , Aequorin/ultrastructure , Conserved Sequence/genetics , Evolution, Molecular , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Amino Acid Motifs , Kinetics , Molecular Dynamics Simulation , Sequence Analysis, Protein , Sequence Homology, Amino Acid , Structure-Activity Relationship
8.
PLoS One ; 12(8): e0182317, 2017.
Article in English | MEDLINE | ID: mdl-28777808

ABSTRACT

Photoproteins are responsible for light emission in a variety of marine ctenophores and coelenterates. The mechanism of light emission in both families occurs via the same reaction. However, the arrangement of amino acid residues surrounding the chromophore, and the catalytic mechanism of light emission is unknown for the ctenophore photoproteins. In this study, we used quantum mechanics/molecular mechanics (QM/MM) and site-directed mutagenesis studies to investigate the details of the catalytic mechanism in berovin, a member of the ctenophore family. In the absence of a crystal structure of the berovin-substrate complex, molecular docking was used to determine the binding mode of the protonated (2-hydroperoxy) and deprotonated (2-peroxy anion) forms of the substrate to berovin. A total of 13 mutants predicted to surround the binding site were targeted by site-directed mutagenesis which revealed their relative importance in substrate binding and catalysis. Molecular dynamics simulations and MM-PBSA (Molecular Mechanics Poisson-Boltzmann/surface area) calculations showed that electrostatic and polar solvation energy are +115.65 and -100.42 kcal/mol in the deprotonated form, respectively. QM/MM calculations and pKa analysis revealed the deprotonated form of substrate is unstable due to the generation of a dioxetane intermediate caused by nucleophilic attack of the substrate peroxy anion at its C3 position. This work also revealed that a hydrogen bonding network formed by a D158- R41-Y204 triad could be responsible for shuttling the proton from the 2- hydroperoxy group of the substrate to bulk solvent.


Subject(s)
Ctenophora/metabolism , Luminescent Measurements , Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Molecular Dynamics Simulation , Quantum Theory , Amino Acid Sequence , Animals , Binding Sites , Crystallography, X-Ray , Ctenophora/growth & development , Hydrogen Bonding , Kinetics , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Sequence Alignment
9.
Biochem Biophys Res Commun ; 490(2): 265-270, 2017 08 19.
Article in English | MEDLINE | ID: mdl-28610920

ABSTRACT

Photoinactivation is a common phenomenon in bioluminescence ctenophore photoproteins (e.g mnemiopsin, berovin and BfosPP) with still unknown mechanism. The activity of coelenterate photoproteins (e.g aequorin), which has high structural similarity with ctenophore photoproteins, is not affected by light. Recently, we have characterized the effects of light on ctenophore photoprotein mnemiopsin, in different conformations, which has demonstrated light induced structural changes, uniquely secondary structures, of both apo and holo mnemiopsin. This paper is further expansion of our previous work, by applying molecular dynamics simulations to investigate photoinactivation related dynamics of berovin at atomistic level, in comparison with aequorin, under the influence of electric component of electromagnetic field. The results have indicated that the intense electric filed could influence structure of both berovin and aequorin but in different manner, whereas moderate electric field only effects on berovin's structure remarkably. In this case, increased helicity of residues E180-M193 and decreased helical contents of L38-D46 and L125-D138 segments are considerable in berovin as well as flexibility elevation of calcium binding loops. These changes cause structural expansion of berovin, especially at N-terminal domain, in direction of electric field. In conclusion, the induced structural changes of mentioned helical parts together with elevated fluctuation of their adjacent segments, N26-D46 and M193-Y206, indicate the influence of light on substrate stabilizing residues, Arg41 and Y204. This condition could presumably leads to inactivation of bioluminescence reaction due to separation of substrate from the cavity of the protein.


Subject(s)
Ctenophora , Electricity , Luminescent Proteins/metabolism , Molecular Dynamics Simulation , Animals , Luminescent Proteins/chemistry , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...