Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
ACS Omega ; 9(26): 28534-28545, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973915

ABSTRACT

Methionine aminopeptidase-II (MetAP-II) is a metalloprotease, primarily responsible for the cotranslational removal of the N-terminal initiator methionine from the nascent polypeptide chain during protein synthesis. MetAP-II has been implicated in angiogenesis and endothelial cell proliferation and is therefore considered a validated target for cancer therapeutics. However, there is no effective drug available against MetAP-II. In this study, we employ Adaptive Bandit molecular dynamics simulations to investigate the structural dynamics of the apo and ligand-bound MetAP-II. Our results focus on the dynamic behavior of the disordered loop that is not resolved in most of the crystal structures. Further analysis of the conformational flexibility of the disordered loop reveals a hidden cryptic pocket that is predicted to be potentially druggable. The network analysis indicates that the disordered loop region has a direct signaling route to the active site. These findings highlight a new way to target MetAP-II by designing inhibitors for the allosteric site within this disordered loop region.

2.
Eur J Dent ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788770

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate and compare the effect of irradiance light and storage media on the elution of triethylene glycol dimethacrylate (TEGDMA) from conventional Filtek Z350XT 3M ESPE and two bulk-fill composites Shofu Beautifil-Bulk and Filtek Bulk fill flowable 3M ESPE using high-performance liquid chromatography (HPLC). MATERIALS AND METHODS: Shofu Beautifil-Bulk, Filtek Bulk fill flowable 3M ESPE, and Filtek Z350XT 3M ESPE were the three types of composites used in this study. Disk shaped samples of 4-mm thickness and 10-mm diameter were fabricated using a stainless steel mold and were polymerized using light emitting diode (LED) and quartz tungsten halogen (QTH) lamps. After polymerization, the samples were immersed in ethanol, artificial saliva with betel quid extract, and distilled water for 1, 7, and 30 days, respectively. The elution of monomer TEGDMA was evaluated using HPLC. STATISTICAL ANALYSIS: To evaluate the mean concentration difference, mixed way analysis of variance (ANOVA) was applied. Between different light, materials, and within the time duration, Tukey's post hoc test was used. A p value of 0.05 was considered significant. RESULTS: During the first day of storage, a significant amount of monomer TEGDMA elution was seen in all the materials. The highest values observed to be in the disks cured with QTH lamp. However, the highest elution was seen when the disks were immersed in ethanol/water solution. While the most stable medium was distilled water, artificial saliva with betel nut extract also had a significant effect on the elution of TEGDMA. The highest value obtained was of Filtek Bulk fill flowable 3M ESPE after 30 days of immersion in both LED and QTH cured disks. CONCLUSION: Filtek Bulk fill flowable 3M ESPE shows better properties in relation to the release of monomer TEGDMA as it releases less amount of monomer in the storage media. The release of monomer was highest in ethanol as compared to artificial saliva and distilled water with the passage of time.

3.
Eur J Dent ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086426

ABSTRACT

OBJECTIVE: Clinical methods use the subjective diagnosis of periodontal diseases by visual observation that could result in differences and variability of diagnosis. The addition of specific markers could aid in the accurate diagnosis of the local population. The objective of the study was to target two of the major proteins for possible significance in such an approach. MATERIALS AND METHODS: Unstimulated saliva samples were collected from 60 participants aged between 18 and 70 years. Three groups each with twenty participants were recruited into periodontitis, gingivitis, and healthy control. STATISTICAL ANALYSIS: The samples were analyzed using human enzyme-linked immunosorbent assay kits for matrix metalloproteinase-8 (MMP-8) and interleukin-1ß (IL-1ß). RESULTS: SPSS version 20 was used to analyze the result. Posthoc analysis by Tukey's test revealed that MMP-8 levels were higher in gingivitis and periodontitis groups as compared with healthy controls. The test also revealed that IL-1ß levels were higher in the periodontitis group compared with the healthy control and gingivitis group. Additionally, one-way analysis of variance analysis showed a significant effect on probing depth in gingivitis and periodontitis patients. The mean age of periodontitis group was significantly higher than other groups. CONCLUSION: Salivary biomarkers may provide useful diagnostic information and could be utilized as tests for periodontal disease screening, prognosis, and prediction.

4.
J Chem Inf Model ; 63(24): 7729-7743, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38059911

ABSTRACT

Understanding the unbinding kinetics of protein-ligand complexes is considered a significant approach for the design of ligands with desired specificity and safety. In recent years, enhanced sampling methods have emerged as effective tools for studying the unbinding kinetics of protein-ligand complexes at the atomistic level. MetAP-II is a target for the treatment of cancer for which not a single effective drug is available yet. The identification of the dissociation rate of ligands from the complexes often serves as a better predictor for in vivo efficacy than the ligands' binding affinity. Here, funnel-based restraint well-tempered metadynamics simulations were applied to predict the residence time of two ligands bound to MetAP-II, along with the ligand association and dissociation mechanism involving the identification of the binding hotspot during ligand egress. The ligand-egressing route revealed by metadynamics simulations also correlated with the identified pathways from the CAVER analysis and by the enhanced sampling simulation using PLUMED. Ligand 1 formed a strong H-bond interaction with GLU364 estimating a higher residence time of 28.22 ± 5.29 ns in contrast to ligand 2 with a residence time of 19.05 ± 3.58 ns, which easily dissociated from the binding pocket of MetAP-II. The results obtained from the simulations were consistent to reveal ligand 1 being superior to ligand 2; however, the experimental data related to residence time were close for both ligands, and no kinetic data were available for ligand 2. The current study could be considered the first attempt to apply an enhanced sampling method for the evaluation of the binding kinetics and thermodynamics of two different classes of ligands to a binuclear metalloprotein.


Subject(s)
Molecular Dynamics Simulation , Physics , Ligands , Thermodynamics , Kinetics , Methionine , Protein Binding
5.
iScience ; 26(10): 107830, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37766976

ABSTRACT

Highly pathogenic avian influenza A H5N1 viruses cause high mortality in humans and have pandemic potential. Effective vaccines and treatments against this threat are urgently needed. Here, we have refined our previously established model of lethal H5N1 infection in cynomolgus macaques. An inhaled aerosol virus dose of 5.1 log10 plaque-forming unit (pfu) induced a strong febrile response and acute respiratory disease, with four out of six macaques succumbing after challenge. Vaccination with three doses of adjuvanted seasonal quadrivalent influenza vaccine elicited low but detectable neutralizing antibody to H5N1. All six vaccinated macaques survived four times the 50% lethal dose of aerosolized H5N1, while four of six unvaccinated controls succumbed to disease. Although vaccination did not protect against severe influenza, vaccinees had reduced respiratory dysfunction and lower viral load in airways compared to controls. We anticipate that our macaque model will play a vital role in evaluating vaccines and antivirals against influenza pandemics.

6.
J Biomol Struct Dyn ; : 1-18, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37747063

ABSTRACT

The Pantothenate synthetase (PS) from the Mycobacterium tuberculosis (Mtb) holds a crucial role in the survival and robust proliferation of bacteria through its catalysis of coenzyme A and acyl carrier protein synthesis. The present study undertook the PS drug target in complex with a co-crystallized ligand and subjected it to docking and virtual screening approaches. The experimental design encompassed three discrete datasets: an active dataset featuring 136 compounds, an inactive dataset comprising 56 compounds, and a decoys dataset curated from the zinc library, comprising an extensive compilation of approximately 53,000 compounds. The compounds' binding energies were observed to be in the range of -5 to ∼-14 kcal/mol. Additionally, binding energy results were further refined through Enrichment Factor analysis (EF). EF is a new statistical approach which uses the scores obtained from docking-based virtual screening and predicts the precision of the scoring function. Remarkably, the Enrichment Factor (EF) analysis produced exceptionally favorable outcomes, attaining an EF of approximately 49% within the uppermost 1% fraction of the compound distribution. Finally, a total of eight compounds, evenly distributed between the active dataset and the decoys dataset, emerged as potent inhibitors of the Pantothenate synthetase (PS) enzyme. The analysis of inhibition constants and binding energy revealed a notable correlation, with an r-squared value (r2) of 0.912 between the two parameters. Furthermore, the shortlisted compounds were subjected to 100 ns MD simulation to determine their stability and dynamics behavior. The decoy compounds that have been identified, exhibiting properties comparable to the active compounds, are postulated as potential candidates for targeting the Pantothenate synthetase (PS) enzyme to treat Mtb infection. Nevertheless, in the pursuit of a comprehensive investigation, it is advisable to undertake additional experimental validation as a component of the subsequent study.Communicated by Ramaswamy H. Sarma.

7.
Article in English | MEDLINE | ID: mdl-37646887

ABSTRACT

Synthetic pesticides are employed to enhance agricultural production. Chronic exposure to organophosphate (OP) pesticides may be a source of health problems. The present study was designed to examine an association of GSTP1 (rs1695) polymorphism with OP pesticide chronic exposure. A case-control study was recruited with 250 subjects comprising exposed (n = 100) and controls (n = 150). A survey was conducted to determine the pesticide type to which workers had exposed. According to recorded survey assessment, two compounds of OP pesticides chloropyrifos and malathion were investigated in the blood samples of exposed study subjects using high-performance liquid chromatography (HPLC). For screening of genetic polymorphism in GSTP1 (rs1695) polymerase chain reaction, restriction length polymorphism (PCR-RFLP) and agarose gel electrophoresis were performed. Statistically, data were analyzed using SPSS v. 20.0 and MedCal© software. Total chrom© navigator programmer was used for detection of OP residues in serum and local pesticide solution. chloropyrifos-OP pesticide residues were detected in serum of estimated chronically exposed subjects at 206 nm HPLC optimal conditions. The pattern of GSTP1 (rs1695) genotypic frequencies depicted that heterozygous genotype was higher in Chloropyrifos exposed subjects (0.56) when compared with controls (0.44). Statistical outcomes showed an insignificant association with GSTP1 (rs1695) polymorphism and chloropyrifos-OP pesticide toxicity (Fisher's exact test 1.0, p = 0.25). An insignificant allelic investigation reflected a protective effect of mutant allele G against chloropyrifos-OP pesticide toxicity in exposed subjects. Findings may be helpful in identifying bioaccumulated pesticide residues, but in studied Pakistani exposed workers, no significant association of GSTP1 (rs1695) variant with chloropyrifos-OPs was demonstrated.

8.
Biotechnol J ; 18(11): e2200477, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37458688

ABSTRACT

Halophytes are the native inhabitants of saline environment. Their biomass can be considered as a potential substrate for the production of microbial enzymes. This study was intended at feasible utilization of a halophytic biomass, Cressia cretica, for pectinase production using a halo- and thermo-tolerant bacterium, Bacillus vallismortis MH 10. The data from fractionation of the C. cretica biomass revealed presence of 17% pectin in this wild biomass. Seven different factors (temperature, agitation, pH, inoculum size, peptone concentration, substrate concentration, and incubation time) affecting pectinase production using C. cretica were assessed through a statistical tool, Plackett-Burman design. Consequently, two significant factors (incubation time and peptone concentration) were optimized using the central composite design. The strain produced 20 IU mL-1 of pectinase after 24 h under optimized conditions. The enzyme production kinetics data also confirmed that 24 h is the most suitable cultivation period for pectinase production. Fourier transform infrared spectroscopy and scanning electron microscopy of C. cretica biomass ascertained utilization of pectin and structural changes after fermentation. The purification of pectinase by using DEAE column yielded specific activity and purification fold of 88.26 IU mg-1 and 3.2, respectively. The purified pectinase had a molecular weight of >65 kDa. This study offers prospects of large-scale production of pectinase by halotolerant strain in the presence of economical and locally grown substrate that makes the enzyme valuable for various industrial operations.


Subject(s)
Peptones , Polygalacturonase , Polygalacturonase/chemistry , Polygalacturonase/metabolism , Biomass , Fermentation , Pectins/metabolism
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 122953, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37392539

ABSTRACT

Carminic Acid (CA), an insect-derived red color, is widely used as a colorant and additive in food and non-food items. The detection of CA is of great concern since it is unacceptable for vegetarians and vegans consumers. Therefore, it is important for food authorities to have a rapid detection method for CA. We describe here a simple and rapid method for the qualitative detection of CA, using Pb2+ for complex formation. As a result, the sample solution shows a visible change from pink to purple (bathochromic shift) which could also be analyzed through a spectrophotometer at λmax = 605 nm. The structure of the CA-Pb2+ complex was also studied through advanced spectroscopic techniques. Moreover, the presence of iron results in the formation of a stable CA-Fe2+ complex without any significant color change, as Fe2+ has a stronger binding affinity with CA. Thus, sodium fluoride (NaF) was used to prevent CA-Fe2+ complex formation. Therefore, two methods were developed based on the absence (method I) and presence (method II) of NaF. The LOD and LOQ for the method I was 0.0025 and 0.0076 mg mL-1, and for method II, values were 0.0136 and 0.0415 mg mL-1, respectively. The methods were also validated by intra and inter-day analyses. A total of 45 commercials, including food and non-food samples, were screened for the detection of CA. The developed methods are applicable for the effective and rapid surveillance of CA in various samples without the use of high-tech instruments.


Subject(s)
Carmine , Colorimetry , Colorimetry/methods , Lead , Spectrum Analysis , Iron
10.
Res Vet Sci ; 161: 96-102, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37329851

ABSTRACT

Avian mycoplasmosis is an infection that commonly prevails in birds, particularly in poultry chickens. Among mycoplasmosis causing organisms, Mycoplasmopsis synoviae is a predominant and lethal pathogen to the aves. Considering the increased incidence of infections by M. synoviae, the prevalence of M. synoviae was deduced in poultry chickens and fancy birds of Karachi region. The lungs and tracheal samples from chicken and dead fancy birds and swab samples from live fancy birds were collected and investigated by amplifying 16 s rRNA gene of M. synoviae. Biochemical characteristics of M. synoviae was also evaluated. Furthermore, surface-associated membrane proteins, that represent key antigens for diagnosis of M. synoviae infection was extracted by Triton X- 114 method. Results showed that M. synoviae was detected more frequently in lungs than in trachea, that could be due to its invasion capacity and tissue affinity. SDS PAGE analysis of extracted membrane proteins showed two prominent hydrophobic proteins of different molecular mass including proteins of 150 and 50 kDa. Protein of 150 kDa was purified by size exclusion chromatography and it exhibited agglutinogen activity. Purified protein was used in the development of one-step immunochromatographic (ICT) assay for the detection of antibodies against M. synoviae using gold nanoparticles coated with polyclonal antibodies. Low levels of antibodies were detected by the developed ICT kit, which has 88% sensitivity with 92% specificity.


Subject(s)
Metal Nanoparticles , Mycoplasma Infections , Mycoplasma synoviae , Poultry Diseases , Animals , Chickens , Prevalence , Pakistan/epidemiology , Gold , Mycoplasma synoviae/genetics , Mycoplasma Infections/diagnosis , Mycoplasma Infections/epidemiology , Mycoplasma Infections/veterinary , Poultry , Membrane Proteins , Poultry Diseases/diagnosis , Poultry Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL