Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 12(1): 450, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36253345

ABSTRACT

Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by heterozygous loss-of-function mutations in the X-linked gene MECP2 that is a global transcriptional regulator. Mutations in the methyl-CpG binding domain (MBD) of MECP2 disrupt its interaction with methylated DNA. Here, we investigate the effect of a novel MECP2 L124W missense mutation in the MBD of an atypical RTT patient with preserved speech in comparison to severe MECP2 null mutations. L124W protein had a limited ability to disrupt heterochromatic chromocenters due to decreased binding dynamics. We isolated two pairs of isogenic WT and L124W induced pluripotent stem cells. L124W induced excitatory neurons expressed stable protein, exhibited increased input resistance and decreased voltage-gated Na+ and K+ currents, and their neuronal dysmorphology was limited to decreased dendritic complexity. Three isogenic pairs of MECP2 null neurons had the expected more extreme morphological and electrophysiological phenotypes. We examined development and maturation of L124W and MECP2 null excitatory neural network activity using micro-electrode arrays. Relative to isogenic controls, L124W neurons had an increase in synchronous network burst frequency, in contrast to MECP2 null neurons that suffered a significant decrease in synchronous network burst frequency and a transient extension of network burst duration. A biologically motivated computational neural network model shows the observed changes in network dynamics are explained by changes in intrinsic Na+ and K+ currents in individual neurons. Our multilevel results demonstrate that RTT excitatory neurons show a wide spectrum of morphological, electrophysiological and circuitry phenotypes that are dependent on the severity of the MECP2 mutation.


Subject(s)
Methyl-CpG-Binding Protein 2 , Rett Syndrome , Humans , Induced Pluripotent Stem Cells/metabolism , Methyl-CpG-Binding Protein 2/genetics , Mutation , Neurons/metabolism , Phenotype , Rett Syndrome/genetics
2.
Mol Autism ; 11(1): 33, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32398033

ABSTRACT

Genetic factors contribute to the development of autism spectrum disorder (ASD), and although non-protein-coding regions of the genome are being increasingly implicated in ASD, the functional consequences of these variants remain largely uncharacterized. Induced pluripotent stem cells (iPSCs) enable the production of personalized neurons that are genetically matched to people with ASD and can therefore be used to directly test the effects of genomic variation on neuronal gene expression, synapse function, and connectivity. The combined use of human pluripotent stem cells with genome editing to introduce or correct specific variants has proved to be a powerful approach for exploring the functional consequences of ASD-associated variants in protein-coding genes and, more recently, long non-coding RNAs (lncRNAs). Here, we review recent studies that implicate lncRNAs, other non-coding mutations, and regulatory variants in ASD susceptibility. We also discuss experimental design considerations for using iPSCs and genome editing to study the role of the non-protein-coding genome in ASD.


Subject(s)
Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/metabolism , Genetic Association Studies , Genetic Predisposition to Disease , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Neurons/metabolism , Alleles , Animals , Biomarkers , Cell Differentiation , Disease Models, Animal , Gene Expression Regulation , Genetic Association Studies/methods , Genetic Variation , Humans , Phenotype , RNA, Untranslated , Synapses
3.
Cell Rep ; 30(12): 4179-4196.e11, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32209477

ABSTRACT

Regulation of translation during human development is poorly understood, and its dysregulation is associated with Rett syndrome (RTT). To discover shifts in mRNA ribosomal engagement (RE) during human neurodevelopment, we use parallel translating ribosome affinity purification sequencing (TRAP-seq) and RNA sequencing (RNA-seq) on control and RTT human induced pluripotent stem cells, neural progenitor cells, and cortical neurons. We find that 30% of transcribed genes are translationally regulated, including key gene sets (neurodevelopment, transcription and translation factors, and glycolysis). Approximately 35% of abundant intergenic long noncoding RNAs (lncRNAs) are ribosome engaged. Neurons translate mRNAs more efficiently and have longer 3' UTRs, and RE correlates with elements for RNA-binding proteins. RTT neurons have reduced global translation and compromised mTOR signaling, and >2,100 genes are translationally dysregulated. NEDD4L E3-ubiquitin ligase is translationally impaired, ubiquitinated protein levels are reduced, and protein targets accumulate in RTT neurons. Overall, the dynamic translatome in neurodevelopment is disturbed in RTT and provides insight into altered ubiquitination that may have therapeutic implications.


Subject(s)
Nervous System/growth & development , Nervous System/pathology , Rett Syndrome/genetics , Ribosomes/metabolism , Ubiquitination , 3' Untranslated Regions/genetics , Animals , Base Sequence , Female , Gene Expression Regulation, Developmental , Glycolysis/genetics , Induced Pluripotent Stem Cells/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Mice , Nedd4 Ubiquitin Protein Ligases/metabolism , Neurons/metabolism , Protein Binding , Protein Biosynthesis , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA-Binding Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Transcription Factors/metabolism , Ubiquitination/genetics
4.
Biol Psychiatry ; 87(2): 139-149, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31540669

ABSTRACT

BACKGROUND: The Xp22.11 locus that encompasses PTCHD1, DDX53, and the long noncoding RNA PTCHD1-AS is frequently disrupted in male subjects with autism spectrum disorder (ASD), but the functional consequences of these genetic risk factors for ASD are unknown. METHODS: To evaluate the functional consequences of PTCHD1 locus deletions, we generated induced pluripotent stem cells (iPSCs) from unaffected control subjects and 3 subjects with ASD with microdeletions affecting PTCHD1-AS/PTCHD1, PTCHD1-AS/DDX53, or PTCHD1-AS alone. Function of iPSC-derived cortical neurons was assessed using molecular approaches and electrophysiology. We also compiled novel and known genetic variants of the PTCHD1 locus to explore the roles of PTCHD1 and PTCHD1-AS in genetic risk for ASD and other neurodevelopmental disorders. Finally, genome editing was used to explore the functional consequences of deleting a single conserved exon of PTCHD1-AS. RESULTS: iPSC-derived neurons from subjects with ASD exhibited reduced miniature excitatory postsynaptic current frequency and N-methyl-D-aspartate receptor hypofunction. We found that 35 ASD-associated deletions mapping to the PTCHD1 locus disrupted exons of PTCHD1-AS. We also found a novel ASD-associated deletion of PTCHD1-AS exon 3 and showed that exon 3 loss altered PTCHD1-AS splicing without affecting expression of the neighboring PTCHD1 coding gene. Finally, targeted disruption of PTCHD1-AS exon 3 recapitulated diminished miniature excitatory postsynaptic current frequency, supporting a role for the long noncoding RNA in the etiology of ASD. CONCLUSIONS: Our genetic findings provide strong evidence that PTCHD1-AS deletions are risk factors for ASD, and human iPSC-derived neurons implicate these deletions in the neurophysiology of excitatory synapses and in ASD-associated synaptic impairment.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Induced Pluripotent Stem Cells , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Humans , Male , Membrane Proteins , Neurons , Synapses
5.
Stem Cell Reports ; 13(6): 1126-1141, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31813827

ABSTRACT

Induced pluripotent stem cells (iPSC) derived from healthy individuals are important controls for disease-modeling studies. Here we apply precision health to create a high-quality resource of control iPSCs. Footprint-free lines were reprogrammed from four volunteers of the Personal Genome Project Canada (PGPC). Multilineage-directed differentiation efficiently produced functional cortical neurons, cardiomyocytes and hepatocytes. Pilot users demonstrated versatility by generating kidney organoids, T lymphocytes, and sensory neurons. A frameshift knockout was introduced into MYBPC3 and these cardiomyocytes exhibited the expected hypertrophic phenotype. Whole-genome sequencing-based annotation of PGPC lines revealed on average 20 coding variants. Importantly, nearly all annotated PGPC and HipSci lines harbored at least one pre-existing or acquired variant with cardiac, neurological, or other disease associations. Overall, PGPC lines were efficiently differentiated by multiple users into cells from six tissues for disease modeling, and variant-preferred healthy control lines were identified for specific disease settings.


Subject(s)
Cell Differentiation , Cell Lineage , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , CRISPR-Cas Systems , Cell Self Renewal , Cell Separation , Ectoderm/cytology , Ectoderm/metabolism , Gene Editing , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Neurons/cytology , Neurons/metabolism , Organoids , Phenotype , T-Lymphocytes/metabolism , Whole Genome Sequencing
6.
Cell Rep ; 17(3): 720-734, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27732849

ABSTRACT

A progressive increase in MECP2 protein levels is a crucial and precisely regulated event during neurodevelopment, but the underlying mechanism is unclear. We report that MECP2 is regulated post-transcriptionally during in vitro differentiation of human embryonic stem cells (hESCs) into cortical neurons. Using reporters to identify functional RNA sequences in the MECP2 3' UTR and genetic manipulations to explore the role of interacting factors on endogenous MECP2, we discover combinatorial mechanisms that regulate RNA stability and translation. The RNA-binding protein PUM1 and pluripotent-specific microRNAs destabilize the long MECP2 3' UTR in hESCs. Hence, the 3' UTR appears to lengthen during differentiation as the long isoform becomes stable in neurons. Meanwhile, translation of MECP2 is repressed by TIA1 in hESCs until HuC predominates in neurons, resulting in a switch to translational enhancement. Ultimately, 3' UTR-directed translational fine-tuning differentially modulates MECP2 protein in the two cell types to levels appropriate for normal neurodevelopment.


Subject(s)
Gene Expression Regulation , Methyl-CpG-Binding Protein 2/genetics , MicroRNAs/metabolism , Neurons/metabolism , RNA-Binding Proteins/metabolism , Transcription, Genetic , 3' Untranslated Regions/genetics , AU Rich Elements/genetics , Base Sequence , Cell Lineage , Cell Proliferation , Conserved Sequence/genetics , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Methyl-CpG-Binding Protein 2/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Prosencephalon/embryology , Protein Binding/genetics , Protein Biosynthesis , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Neurobiol Dis ; 76: 37-45, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25644311

ABSTRACT

MECP2 mutations cause the X-linked neurodevelopmental disorder Rett Syndrome (RTT) by consistently altering the protein encoded by the MECP2e1 alternative transcript. While mutations that simultaneously affect both MECP2e1 and MECP2e2 isoforms have been widely studied, the consequence of MECP2e1 deficiency on human neurons remains unknown. Here we report the first isoform-specific patient induced pluripotent stem cell (iPSC) model of RTT. RTTe1 patient iPS cell-derived neurons retain an inactive X-chromosome and express only the mutant allele. Single-cell mRNA analysis demonstrated they have a molecular signature of cortical neurons. Mutant neurons exhibited a decrease in soma size, reduced dendritic complexity and decreased cell capacitance, consistent with impaired neuronal maturation. The soma size phenotype was rescued cell-autonomously by MECP2e1 transduction in a level-dependent manner but not by MECP2e2 gene transfer. Importantly, MECP2e1 mutant neurons showed a dysfunction in action potential generation, voltage-gated Na(+) currents, and miniature excitatory synaptic current frequency and amplitude. We conclude that MECP2e1 mutation affects soma size, information encoding properties and synaptic connectivity in human neurons that are defective in RTT.


Subject(s)
Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/physiology , Methyl-CpG-Binding Protein 2/genetics , Neurons/pathology , Neurons/physiology , Rett Syndrome/genetics , Action Potentials , Humans , Mutation , Neurons/metabolism , Protein Isoforms , Rett Syndrome/pathology , Rett Syndrome/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...