Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35954827

ABSTRACT

Human exposure to indoor pollution is one of the most well-established ways that housing affects health. We conducted a review to document evidence on the morbidity and mortality outcomes associated with indoor household exposures in children and adults in South Africa. The authors conducted a scientific review of the publicly available literature up to April 2022 using different search engines (PubMed, ProQuest, Science Direct, Scopus and Google Scholar) to identify the literature that assessed the link between indoor household exposures and morbidity and mortality outcomes in children and adults. A total of 16 studies with 16,920 participants were included. Bioaerosols, allergens, dampness, tobacco smoking, household cooking and heating fuels, particulate matter, gaseous pollutants and indoor spray residue play a significant role in different morbidity outcomes. These health outcomes include dental caries, asthma, tuberculosis, severe airway inflammation, airway blockage, wheeze, rhinitis, bronchial hyperresponsiveness, phlegm on the chest, current rhinoconjunctivitis, hay fever, poor early life immune function, hypertensive disorders of pregnancy, gestational hypertension, and increased incidence of nasopharyngeal bacteria, which may predispose people to lower respiratory tract infections. The findings of this research highlight the need for more initiatives, programs, strategies, and policies to better reduce the negative consequences of indoor household exposures.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Dental Caries , Adult , Air Pollutants/analysis , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Child , Cooking , Humans , Morbidity , South Africa/epidemiology
2.
Toxins (Basel) ; 13(3)2021 03 12.
Article in English | MEDLINE | ID: mdl-33809162

ABSTRACT

Most conventional water treatment plants are not sufficiently equipped to treat both intracellular and extracellular Microcystins in drinking water. However, the effectiveness of sodium hypochlorite in removing Microcystin in containers at the point-of-use is not yet known. This study aimed to assess point-of-use water container treatment using bleach or sodium hypochlorite (NaOCl) and to assess the health problems associated with microcystins. Thirty-nine percent (29 of 74) of the total selected households were randomly selected to receive and treat their stored container water with sodium hypochlorite. The level of microcystin in the container water was measured after 30 min of contact with sodium hypochlorite. Microcystin concentrations in both the blooming and decaying seasons were higher (mean 1.10, 95% CI 0.46-1.67 µg/L and mean 1.14, 95% CI 0.65-1.63 µg/L, respectively) than the acceptable limit of 1 µg/L in households that did not treat their water with NaOCl, whilst in those that did, there was a significant reduction in the microcystin concentration (mean 0.07, 95% CI 0.00-0.16 µg/L and mean 0.18, 95% CI 0.00-0.45 µg/L). In conclusion, sodium hypochlorite treatment decreased microcystin s to an acceptable level and reduced the related health problems.


Subject(s)
Decontamination , Disinfectants , Disinfection , Equipment Contamination/prevention & control , Harmful Algal Bloom , Microcystins/analysis , Sodium Hypochlorite , Water Microbiology , Water Purification/instrumentation , Water Supply , Humans , Microcystins/toxicity , Risk Assessment , Water Quality
3.
Article in English | MEDLINE | ID: mdl-33915712

ABSTRACT

Particulate matter of aerodynamic diameter of less than 2.5 µm (PM2.5) is a recognised carcinogen and a priority air pollutant owing to its respirable and toxic chemical components. There is a dearth of information in South Africa on cancer and non-cancer risks of exposure to heavy metal (HM) content of PM2.5. This study determined the seasonal concentration of HM in PM2.5 and the cancer and non-cancer risks of exposure to HM in PM2.5. Ambient PM2.5 was monitored and samples were collected during the winter and summer months in an industrialized area in South Africa. Concentration levels of nine HMs-As, Cu, Cd, Cr, Fe, Mn, Ni, Pb, and Zn-were determined in the PM2.5 samples using inductive coupled optical emission spectrophotometry. The non-cancer and cancer risks of each metal through the inhalation, ingestion and dermal routes were estimated using the Hazard Quotient and Excess Lifetime Cancer Risk (ELCR), respectively, among infants, children, and adults. Mean concentration of each HM-bound PM2.5 was higher in winter than in summer. The probability of the HM to induce non-cancer effects was higher during winter than in summer. The mean ELCR for HMs in PM2.5 (5.24 × 10-2) was higher than the acceptable limit of 10-6 to 10-4. The carcinogenic risk from As, Cd, Cr, Ni, and Pb were higher than the acceptable limit for all age groups. The risk levels for the carcinogenic HMs followed the order: Cr > As > Cd > Ni > Pb. The findings indicated that the concentrations of HM in PM2.5 demonstrated a season-dependent pattern and could trigger cancer and non-cancer health risks. The formulation of a regulatory standard for HM in South Africa and its enforcement will help in reducing human exposure to HM-bound PM2.5.


Subject(s)
Air Pollutants , Metals, Heavy , Adult , Air Pollutants/analysis , Child , Environmental Monitoring , Humans , Infant , Metals, Heavy/analysis , Particulate Matter/analysis , Risk Assessment , South Africa/epidemiology
4.
Environ Geochem Health ; 42(7): 2163-2178, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31848784

ABSTRACT

Concerns over the health effects of exposure to particulate matter of aerodynamic diameter of less than 2.5 µm (PM2.5) led the South African Government to establish the national standard for PM2.5 in the year 2012. However, there is currently no exposure limit for polycyclic aromatic hydrocarbons (PAHs) and PM2.5-bound PAHs. The understanding of the concentration levels and potential health risks of exposure to PM2.5-bound PAHs is important in ensuring a suitable risk assessment and risk management plans. This study, therefore, determined the concentration levels and carcinogenic and mutagenic health risks of PM2.5-bound PAHs. A hundred and forty-four PM2.5 samples were collected over 4 months during the winter and summer seasons of 2016 in an industrial area. The concentrations of 16 PAHs were analysed by gas chromatography-mass spectrometry, and their carcinogenic and mutagenic risks were determined using the Human Health Risk Assessment model. The mean winter (38.20 ± 8.4 µg/m3) and summer (22.3 ± 4.1 µg/m3) concentrations of PM2.5 levels were lower than the stipulated 40 µg/m3 daily limit. The daily inhalation and ingestion exposure to PAHs for all age groups were higher than the daily exposure through the dermal contact. Children and adults are more likely to inhale and ingest PAHs in PM2.5 than infants. The excess cancer risk and excess mutagenic risk values were below the priority risk level (10-4). There is a potential risk of 1-8 per million persons developing cancer from exposure to benzo[a]anthracene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene over a lifetime of 70 years.


Subject(s)
Air Pollutants/chemistry , Carcinogens, Environmental/analysis , Mutagens/analysis , Particulate Matter/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Air Pollutants/analysis , Cities , Humans , Industry , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Seasons , South Africa
5.
Article in English | MEDLINE | ID: mdl-30795513

ABSTRACT

There is a growing concern that exposure to particulate matter of aerodynamic diameter of less than 2.5 µm (PM2.5) with biological composition (bioaerosols) may play a key role in the prevalence of adverse health outcomes in humans. This study determined the bacterial and fungal concentrations in PM2.5 and their inhalation health risks in an industrial vicinity in South Africa. Samples of PM2.5 collected on a 47-mm glass fiber filter during winter and summer months were analysed for bacterial and fungal content using standard methods. The health risks from inhalation of bioaerosols were done by estimating the age-specific dose rate. The concentration of bacteria (168⁻378 CFU/m³) was higher than fungi (58⁻155 CFU/m³). Bacterial and fungal concentrations in PM2.5 were lower in winter than in the summer season. Bacteria identified in summer were similar to those identified in winter: Staphylococcus sp., Bacillus sp., Micrococcus sp., Flavobacterium sp., Klebsiella sp. and Pseudomonas sp. Moreover, the fungal floras identified include Cladosporium spp., Aspergillus spp., Penicillium spp., Fusarium spp. and Alternaria spp. Children inhaled a higher dose of bacterial and fungal aerosols than adults. Bacteria and fungi are part of the bioaerosol components of PM2.5. Bioaerosol exposure may present additional health risks for children.


Subject(s)
Air Microbiology , Air Pollutants/analysis , Air Pollutants/toxicity , Particulate Matter/analysis , Particulate Matter/toxicity , Adult , Aerosols/analysis , Bacteria/classification , Bacteria/isolation & purification , Child , Fungi/classification , Fungi/isolation & purification , Humans , Metallurgy , Seasons , South Africa
6.
BMJ Open ; 7(3): e013941, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28289048

ABSTRACT

OBJECTIVE: To assess the health risks associated with exposure to particulate matter (PM10), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3). DESIGN: The study is an ecological study that used the year 2014 hourly ambient pollution data. SETTING: The study was conducted in an industrial area located in Pretoria West, South Africa. The area accommodates a coal-fired power station, metallurgical industries such as a coke plant and a manganese smelter. DATA AND METHOD: Estimate of possible health risks from exposure to airborne PM10, SO2, NO2, CO and O3 was performed using the US Environmental Protection Agency human health risk assessment framework. A scenario-assessment approach where normal (average exposure) and worst-case (continuous exposure) scenarios were developed for intermediate (24-hour) and chronic (annual) exposure periods for different exposure groups (infants, children, adults). The normal acute (1-hour) exposure to these pollutants was also determined. OUTCOME MEASURES: Presence or absence of adverse health effects from exposure to airborne pollutants. RESULTS: Average annual ambient concentration of PM10, NO2 and SO2 recorded was 48.3±43.4, 11.50±11.6 and 18.68±25.4 µg/m3, respectively, whereas the South African National Ambient Air Quality recommended 40, 40 and 50 µg/m3 for PM10, NO2 and SO2, respectively. Exposure to an hour's concentration of NO2, SO2, CO and O3, an 8-hour concentration of CO and O3, and a 24-hour concentration of PM10, NO2 and SO2 will not likely produce adverse effects to sensitive exposed groups. However, infants and children, rather than adults, are more likely to be affected. Moreover, for chronic annual exposure, PM10, NO2 and SO2 posed a health risk to sensitive individuals, with the severity of risk varying across exposed groups. CONCLUSIONS: Long-term chronic exposure to airborne PM10, NO2 and SO2 pollutants may result in health risks among the study population.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Industry , Inhalation Exposure/analysis , Particulate Matter/analysis , Urban Population , Adult , Aged , Carbon Monoxide/analysis , Child , Environmental Exposure/adverse effects , Environmental Monitoring , Female , Humans , Infant , Inhalation Exposure/adverse effects , Male , Metallurgy , Nitrogen Dioxide/analysis , Ozone/analysis , Power Plants , Risk , South Africa , Sulfur Dioxide/analysis
7.
Article in English | MEDLINE | ID: mdl-27314370

ABSTRACT

Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or) keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality.


Subject(s)
Air Pollutants/toxicity , Inhalation Exposure/adverse effects , Particulate Matter/toxicity , Air Pollution/adverse effects , Hazardous Substances/toxicity , Humans
SELECTION OF CITATIONS
SEARCH DETAIL