Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 949: 175107, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39084118

ABSTRACT

The scarcity of freshwater poses significant challenges to agriculture, often necessitating the use of alternative water sources such as reclaimed water. While reclaimed water offers a viable solution by providing water and nutrients to crops, its potential impacts on soil microbial communities remain a subject of investigation. In this investigation, we conducted a field experiment cultivating Maize (Zea mays) and Lavender (Lavandula angustifolia), employing irrigation with reclaimed water originating from domestic wastewater, while control samples were irrigated using freshwater. Utilizing high-throughput sequencing, we assessed the effect of reclaimed water on soil bacteria and fungi. Plant biomass exhibited a significant response to treated wastewater. Alpha diversity metrics of soil microbial communities did not reveal significant changes in soils irrigated with reclaimed water compared to control samples. Reclaimed water, however, demonstrated a selective influence on microorganisms associated with nutrient cycling. Co-occurrence network analysis unveiled that reclaimed water may alter soil microbial community structure and stability. Although our work presents overall positive outcomes, further investigation into the long-term implications of reclaimed water irrigation is warranted.


Subject(s)
Agricultural Irrigation , Microbiota , Soil Microbiology , Soil , Agricultural Irrigation/methods , Soil/chemistry , Wastewater/microbiology , Waste Disposal, Fluid/methods , Plant Development , Bacteria , Zea mays/growth & development
2.
Article in English | MEDLINE | ID: mdl-38517633

ABSTRACT

Anaerobic digestate is a popular soil additive which can promote sustainability and transition toward a circular economy. This study addresses how anaerobic digestate modifies soil health when combined with a common chemical fertilizer. Attention was given to soil microbes and, a neglected but of paramount importance soil taxonomic group, soil nematodes. A mesocosm experiment was set up in order to assess the soil's microbial and nematode community. The results demonstrated that the microbial diversity was not affected by the different fertilization regimes, although species richness increased after digestate and mixed fertilization. The composition and abundance of nematode community did not respond to any treatment. Mixed fertilization notably increased potassium (K) and boron (B) levels, while nitrate (NO3-) levels were uniformly elevated across fertilized soils, despite variations in nitrogen input. Network analysis revealed that chemical fertilization led to a densely interconnected network with mainly mutualistic relationships which could cause ecosystem disruption, while digestate application formed a more complex community based on bacterial interactions. However, the combination of both orchestrated a more balanced and less complex community structure, which is more resilient to random disturbances, but on the downside, it is more likely to collapse under targeted perturbations.

4.
Mycorrhiza ; 31(5): 589-598, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34279725

ABSTRACT

Many woody and herbaceous plants in temperate forests cannot establish and survive in the absence of mycorrhizal associations. Most temperate forests are dominated by ectomycorrhizal woody plant species, which implies that the carrying capacity of the habitat for arbuscular mycorrhizal fungi (AMF) is relatively low and AMF could in some cases experience a limitation of propagules. Here we address how the AMF community composition varied in a small temperate forest site in Germany in relation to time, space, two plant host species, and also with regard to the degree to which plots were covered with AMF-associating woody species. The AMF communities in our study were non-random. We observed that space had a greater impact on fungal community composition than either time, mycorrhizal state of the close-by woody species, or the identity of the host plant. The identity of the host plant was the only parameter that modified AMF richness in the roots. The set of parameters which we addressed has rarely been studied together, and the resulting ranking could ease prioritizing some of them to be included in future surveys. AMF are crucial for the establishment of understory plants in temperate forests, making it desirable to further explore how they vary in time and space.


Subject(s)
Mycobiome , Mycorrhizae , Forests , Host Specificity , Plant Roots , Soil Microbiology
5.
FEMS Microbiol Ecol ; 96(2)2020 02 01.
Article in English | MEDLINE | ID: mdl-31868885

ABSTRACT

Denitrification is an ecosystem process linked to ongoing climate change, because it releases nitrous oxide (N2O) into the atmosphere. To date, the literature covers mostly how aboveground (i.e. plant community structure) and belowground (i.e. plant-associated soil microbes) biota separately influence denitrification in isolation of each other. We here present a mesocosm experiment where we combine a manipulation of belowground biota (i.e. addition of Rhizophagus irregularis propagules to the indigenous mycorrhizal community) with a realized gradient in plant diversity. We used a seed mix containing plant species representative of mesophytic European grasslands and by stochastic differences in species establishment across the sixteen replicates per treatment level a spontaneously established gradient in plant diversity. We address mycorrhizal-induced and plant-diversity mediated changes on denitrification potential parameters and how these differ from the existing literature that studies them independently of each other. We show that unlike denitrification potential, N2O potential emissions do not change with mycorrhiza and depend instead on realized plant diversity. By linking mycorrhizal ecology to an N-cycling process, we present a comprehensive assessment of terrestrial denitrification dynamics when diverse plants co-occur.


Subject(s)
Atmosphere/chemistry , Biota , Mycorrhizae/physiology , Nitrous Oxide/analysis , Plants/microbiology , Denitrification , Ecosystem , Host Microbial Interactions , Mycorrhizae/metabolism , Plants/classification , Plants/metabolism , Soil/chemistry , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL