Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 270
Filter
1.
Shock ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38713581

ABSTRACT

ABSTRACT: Post-sepsis early mortality is being replaced by survivors who experience either a rapid recovery and favorable hospital discharge or the development of chronic critical illness (CCI) with suboptimal outcomes. The underlying immunological response that determines these clinical trajectories remains poorly defined at the transcriptomic level. As classical and non-classical monocytes are key leukocytes in both the innate and adaptive immune systems, we sought to delineate the transcriptomic response of these cell types. Using single-cell RNA sequencing and pathway analyses, we identified gene expression patterns between these two groups that are consistent with differences in TNFα production based on clinical outcome. This may provide therapeutic targets for those at risk for CCI in order to improve their phenotype/endotype, morbidity, and long-term mortality.

2.
Front Immunol ; 15: 1355405, 2024.
Article in English | MEDLINE | ID: mdl-38720891

ABSTRACT

Introduction: Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods: Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results: We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion: The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.


Subject(s)
Myeloid-Derived Suppressor Cells , Sepsis , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Humans , Sepsis/immunology , Transcriptome , Male , Female , Cell Differentiation/immunology , Gene Expression Profiling
3.
bioRxiv ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38464077

ABSTRACT

Abdominal aortic aneurysm (AAA) formation is a chronic vascular pathology characterized by inflammation, leukocyte infiltration and vascular remodeling. The aim of this study was to delineate the protective role of Resolvin D2 (RvD2), a bioactive isoform of specialized proresolving lipid mediators, via G-protein coupled receptor 18 (GPR18) receptor signaling in attenuating AAAs. Importantly, RvD2 and GPR18 levels were significantly decreased in aortic tissue of AAA patients compared with controls. Furthermore, using an established murine model of AAA in C57BL/6 (WT) mice, we observed that treatment with RvD2 significantly attenuated aortic diameter, pro-inflammatory cytokine production, immune cell infiltration (neutrophils and macrophages), elastic fiber disruption and increased smooth muscle cell α-actin expression as well as increased TGF-ß2 and IL-10 expressions compared to untreated mice. Moreover, the RvD2-mediated protection from vascular remodeling and AAA formation was blocked when mice were previously treated with siRNA for GPR18 signifying the importance of RvD2/GPR18 signaling in vascular inflammation. Mechanistically, RvD2-mediated protection significantly enhanced infiltration and activation of monocytic myeloid-derived suppressor cells (M-MDSCs) by increasing TGF-ß2 and IL-10 secretions that mitigated smooth muscle cell activation in a GPR18-dependent manner to attenuate aortic inflammation and vascular remodeling via this intercellular crosstalk. Collectively, this study demonstrates RvD2 treatment induces an expansion of myeloid-lineage committed progenitors, such as M-MDSCs, and activates GPR18-dependent signaling to enhance TGF-ß2 and IL-10 secretion that contributes to resolution of aortic inflammation and remodeling during AAA formation.

4.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328174

ABSTRACT

Rationale: Patients with end stage lung diseases require lung transplantation (LTx) that can be impeded by ischemia-reperfusion injury (IRI) leading to subsequent chronic lung allograft dysfunction (CLAD) and inadequate outcomes. Objectives: We examined the undefined role of MerTK (receptor Mer tyrosine kinase) on monocytic myeloid-derived suppressor cells (M-MDSCs) in efferocytosis (phagocytosis of apoptotic cells) to facilitate resolution of lung IRI. Methods: Single-cell RNA sequencing of lung tissue and BAL from post-LTx patients was analyzed. Murine lung hilar ligation and allogeneic orthotopic LTx models of IRI were used with Balb/c (WT), cebpb -/- (MDSC-deficient), Mertk -/- or MerTK-CR (cleavage resistant) mice. Lung function, IRI (inflammatory cytokine and myeloperoxidase expression, immunohistology for neutrophil infiltration), and flow cytometry of lung tissue for efferocytosis of apoptotic neutrophils were assessed in mice. Measurements and Main Results: A significant downregulation in MerTK-related efferocytosis genes in M-MDSC populations of CLAD patients compared to healthy subjects was observed. In the murine IRI model, significant increase in M-MDSCs, MerTK expression and efferocytosis was observed in WT mice during resolution phase that was absent in cebpb -/- Land Mertk -/- mice. Adoptive transfer of M-MDSCs in cebpb -/- mice significantly attenuated lung dysfunction, and inflammation leading to resolution of IRI. Additionally, in a preclinical murine orthotopic LTx model, increases in M-MDSCs were associated with resolution of lung IRI in the transplant recipients. In vitro studies demonstrated the ability of M-MDSCs to efferocytose apoptotic neutrophils in a MerTK-dependent manner. Conclusions: Our results suggest that MerTK-dependent efferocytosis by M-MDSCs can significantly contribute to the resolution of post-LTx IRI.

5.
Crit Care ; 28(1): 18, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212826

ABSTRACT

BACKGROUND: Sepsis and trauma are known to disrupt gut bacterial microbiome communities, but the impacts and perturbations in the fungal (mycobiome) community after severe infection or injury, particularly in patients experiencing chronic critical illness (CCI), remain unstudied. METHODS: We assess persistence of the gut mycobiome perturbation (dysbiosis) in patients experiencing CCI following sepsis or trauma for up to two-to-three weeks after intensive care unit hospitalization. RESULTS: We show that the dysbiotic mycobiome arrays shift toward a pathobiome state, which is more susceptible to infection, in CCI patients compared to age-matched healthy subjects. The fungal community in CCI patients is largely dominated by Candida spp; while, the commensal fungal species are depleted. Additionally, these myco-pathobiome arrays correlate with alterations in micro-ecological niche involving specific gut bacteria and gut-blood metabolites. CONCLUSIONS: The findings reveal the persistence of mycobiome dysbiosis in both sepsis and trauma settings, even up to two weeks post-sepsis and trauma, highlighting the need to assess and address the increased risk of fungal infections in CCI patients.


Subject(s)
Gastrointestinal Microbiome , Mycobiome , Sepsis , Humans , Dysbiosis/complications , Dysbiosis/microbiology , Candida , Bacteria , Sepsis/complications , Fungi
6.
JCI Insight ; 9(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38100268

ABSTRACT

BACKGROUNDSepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients generally relies on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision.METHODSAn ex vivo whole-blood enzyme-linked immunosorbent spot (ELISpot) assay for cellular production of interferon γ (IFN-γ) was evaluated in 107 septic and 68 nonseptic patients from 5 academic health centers using blood samples collected on days 1, 4, and 7 following ICU admission.RESULTSCompared with 46 healthy participants, unstimulated and stimulated whole-blood IFN-γ expression was either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole-blood IFN-γ expression was significantly reduced on ICU days 1, 4, and 7 (all P < 0.05), due to both significant reductions in total number of IFN-γ-producing cells and amount of IFN-γ produced per cell (all P < 0.05). Importantly, IFN-γ total expression on days 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6, and procalcitonin. Septic patients with low IFN-γ expression were older and had lower ALCs and higher soluble PD-L1 and IL-10 concentrations, consistent with an immunosuppressed endotype.CONCLUSIONSA whole-blood IFN-γ ELISpot assay can both identify septic patients at increased risk of late mortality and identify immunosuppressed septic patients.TRIAL REGISTRYN/A.FUNDINGThis prospective, observational, multicenter clinical study was directly supported by National Institute of General Medical Sciences grant R01 GM-139046, including a supplement (R01 GM-139046-03S1) from 2022 to 2024.


Subject(s)
Interferon-gamma , Sepsis , Humans , Interferon-gamma/metabolism , Immunosorbents/therapeutic use , Prospective Studies , Biomarkers
7.
medRxiv ; 2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37745385

ABSTRACT

BACKGROUND: Sepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients has generally relied on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision. METHODS: An ex vivo whole blood enzyme-linked immunosorbent (ELISpot) assay for cellular production of interferon-γ (IFN-γ) was evaluated in 107 septic and 68 non-septic patients from five academic health centers using blood samples collected on days 1, 4 and 7 following ICU admission. RESULTS: Compared with 46 healthy subjects, unstimulated and stimulated whole blood IFNγ expression were either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole blood IFNγ expression was significantly reduced on ICU days 1, 4 and 7 (all p<0.05), due to both significant reductions in total number of IFNγ producing cells and amount of IFNγ produced per cell (all p<0.05). Importantly, IFNγ total expression on day 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6 and procalcitonin. Septic patients with low IFNγ expression were older and had lower ALC and higher sPD-L1 and IL-10 concentrations, consistent with an immune suppressed endotype. CONCLUSIONS: A whole blood IFNγ ELISpot assay can both identify septic patients at increased risk of late mortality, and identify immune-suppressed, sepsis patients.

9.
Front Pediatr ; 11: 1177048, 2023.
Article in English | MEDLINE | ID: mdl-37425266

ABSTRACT

Introduction: Although SARS-CoV-2 infection can lead to severe COVID-19 in children, the role of biomarkers for assessing the risk of progression to severe disease is not well established in the pediatric population. Given the differences in monocyte signatures associated with worsening COVID-19 in adults, we aimed to determine whether monocyte anisocytosis early in the infectious course would correspond with increasing severity of COVID-19 in children. Methods: We performed a multicenter retrospective study of 215 children with SARS-CoV-2 infection, Multisystem Inflammatory Syndrome in Children (MIS-C), convalescent COVID-19, and healthy age-matched controls to determine whether monocyte anisocytosis, quantified by monocyte distribution width (MDW) on complete blood count, was associated with increasing severity of COVID-19. We performed exploratory analyses to identify other hematologic parameters in the inflammatory signature of pediatric SARS-CoV-2 infection and determine the most effective combination of markers for assessing COVID-19 severity in children. Results: Monocyte anisocytosis increases with COVID-19 severity and need for hospitalization. Although other inflammatory markers such as lymphocyte count, neutrophil/lymphocyte ratio, C-reactive protein, and cytokines correlate with disease severity, these parameters were not as sensitive as MDW for identifying severe disease in children. An MDW threshold of 23 offers a sensitive marker for severe pediatric COVID-19, with improved accuracy when assessed in combination with other hematologic parameters. Conclusion: Monocyte anisocytosis corresponds with shifting hematologic profiles and inflammatory markers in children with COVID-19, and MDW serves as a clinically accessible biomarker for severe COVID-19 in children.

10.
Crit Care ; 27(1): 292, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474944

ABSTRACT

BACKGROUND: Sepsis is a heterogenous syndrome with limited therapeutic options. Identifying immunological endotypes through gene expression patterns in septic patients may lead to targeted interventions. We investigated whether patients admitted to a surgical intensive care unit (ICU) with sepsis and with high risk of mortality express similar endotypes to non-septic, but still critically ill patients using two multiplex transcriptomic metrics obtained both on admission to a surgical ICU and at set intervals. METHODS: We analyzed transcriptomic data from 522 patients in two single-site, prospective, observational cohorts admitted to surgical ICUs over a 5-year period ending in July 2020. Using an FDA-cleared analytical platform (nCounter FLEX®, NanoString, Inc.), we assessed a previously validated 29-messenger RNA transcriptomic classifier for likelihood of 30-day mortality (IMX-SEV-3) and a 33-messenger RNA transcriptomic endotype classifier. Clinical outcomes included all-cause mortality, development of chronic critical illness, and secondary infections. Univariate and multivariate analyses were performed to assess for true effect and confounding. RESULTS: Sepsis was associated with a significantly higher predicted and actual hospital mortality. At enrollment, the predominant endotype for both septic and non-septic patients was adaptive, though with significantly different distributions. Inflammopathic and coagulopathic septic patients, as well as inflammopathic non-septic patients, showed significantly higher frequencies of secondary infections compared to those with adaptive endotypes (p < 0.01). Endotypes changed during ICU hospitalization in 57.5% of patients. Patients who remained adaptive had overall better prognosis, while those who remained inflammopathic or coagulopathic had worse overall outcomes. For severity metrics, patients admitted with sepsis and a high predicted likelihood of mortality showed an inflammopathic (49.6%) endotype and had higher rates of cumulative adverse outcomes (67.4%). Patients at low mortality risk, whether septic or non-septic, almost uniformly presented with an adaptive endotype (100% and 93.4%, respectively). CONCLUSION: Critically ill surgical patients express different and evolving immunological endotypes depending upon both their sepsis status and severity of their clinical course. Future studies will elucidate whether endotyping critically ill, septic patients can identify individuals for targeted therapeutic interventions to improve patient management and outcomes.


Subject(s)
Coinfection , Sepsis , Humans , Cohort Studies , Critical Illness , Prospective Studies , Intensive Care Units , Hospital Mortality , RNA, Messenger
11.
Clin Sci (Lond) ; 137(12): 963-978, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37337946

ABSTRACT

Sexual dimorphisms exist in multiple domains, from learning and memory to neurocognitive disease, and even in the immune system. Male sex has been associated with increased susceptibility to infection, as well as increased risk of adverse outcomes. Sepsis remains a major source of morbidity and mortality globally, and over half of septic patients admitted to intensive care are believed to suffer some degree of sepsis-associated encephalopathy (SAE). In the short term, SAE is associated with an increased risk of in-hospital mortality, and in the long term, has the potential for significant impairment of cognition, memory, and acceleration of neurocognitive disease. Despite increasing information regarding sexual dimorphism in neurologic and immunologic systems, research into these dimorphisms in sepsis-associated encephalopathy remains critically understudied. In this narrative review, we discuss how sex has been associated with brain morphology, chemistry, and disease, sexual dimorphism in immunity, and existing research into the effects of sex on SAE.


Subject(s)
Sepsis-Associated Encephalopathy , Sepsis , Humans , Male , Sepsis-Associated Encephalopathy/complications , Sex Characteristics , Sepsis/complications , Brain
12.
Res Sq ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37214996

ABSTRACT

Background: Sepsis is a heterogenous syndrome with limited therapeutic options. Identifying characteristic gene expression patterns, or endotypes, in septic patients may lead to targeted interventions. We investigated whether patients admitted to a surgical ICU with sepsis and with high risk of mortality express similar endotypes to non-septic, but still critically ill patients using two multiplex transcriptomic metrics obtained both on admission to a surgical intensive care unit (ICU) and at set intervals. Methods: We analyzed transcriptomic data from 522 patients in two single-site, prospective, observational cohorts admitted to surgical ICUs over a 5-year period ending in July 2020 . Using an FDA-cleared analytical platform (nCounter FLEX ® , NanoString, Inc.), we assessed a previously validated 29-messenger RNA transcriptomic classifier for likelihood of 30-day mortality (IMX-SEV-3) and a 33-messenger RNA transcriptomic endotype classifier. Clinical outcomes included all-cause (in-hospital, 30-, 90-day) mortality, development of chronic critical illness (CCI), and secondary infections. Univariate and multivariate analyses were performed to assess for true effect and confounding. Results: Sepsis was associated with a significantly higher predicted and actual hospital mortality. At enrollment, the predominant endotype for both septic and non-septic patients was adaptive , though with significantly different distributions. Inflammopathic and coagulopathic septic patients, as well as inflammopathic non-septic patients, showed significantly higher frequencies of secondary infections compared to those with adaptive endotypes (p<0.01). Endotypes changed during ICU hospitalization in 57.5% of patients. Patients who remained adaptive had overall better prognosis, while those who remained inflammopathic or coagulopathic had worse overall outcomes. For severity metrics, patients admitted with sepsis and a high predicted likelihood of mortality showed an inflammopathic (49.6%) endotype and had higher rates of cumulative adverse outcomes (67.4%). Patients at low mortality risk, whether septic or non-septic, almost uniformly presented with an adaptive endotype (100% and 93.4%, respectively). Conclusion : Critically ill surgical patients express different and evolving immunological endotypes depending upon both their sepsis status and severity of their clinical course. Future studies will elucidate whether endotyping critically ill, septic patients can identify individuals for targeted therapeutic interventions to improve patient management and outcomes.

13.
Ann Intensive Care ; 13(1): 17, 2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36906875

ABSTRACT

BACKGROUND: Profound lymphopenia is an independent predictor of adverse clinical outcomes in sepsis. Interleukin-7 (IL-7) is essential for lymphocyte proliferation and survival. A previous phase II study showed that CYT107, a glycosylated recombinant human IL-7, administered intramuscularly reversed sepsis-induced lymphopenia and improved lymphocyte function. Thepresent study evaluated intravenous administration of CYT107. This prospective, double-blinded, placebo-controlled trial was designed to enroll 40 sepsis patients, randomized 3:1 to CYT107 (10 µg/kg) or placebo, for up to 90 days. RESULTS: Twenty-one patients were enrolled (fifteen CYT107 group, six placebo group) at eight French and two US sites. The study was halted early because three of fifteen patients receiving intravenous CYT107 developed fever and respiratory distress approximately 5-8 h after drug administration. Intravenous administration of CYT107 resulted in a two-threefold increase in absolute lymphocyte counts (including in both CD4+ and CD8+ T cells (all p < 0.05)) compared to placebo. This increase was similar to that seen with intramuscular administration of CYT107, was maintained throughout follow-up, reversed severe lymphopenia and was associated with increase in organ support free days (OSFD). However, intravenous CYT107 produced an approximately 100-fold increase in CYT107 blood concentration compared with intramuscular CYT107. No cytokine storm and no formation of antibodies to CYT107 were observed. CONCLUSION: Intravenous CYT107 reversed sepsis-induced lymphopenia. However, compared to intramuscular CYT107 administration, it was associated with transient respiratory distress without long-term sequelae. Because of equivalent positive laboratory and clinical responses, more favorable pharmacokinetics, and better patient tolerability, intramuscular administration of CYT107 is preferable. TRIAL REGISTRATION: Clinicaltrials.gov, NCT03821038. Registered 29 January 2019, https://clinicaltrials.gov/ct2/show/NCT03821038?term=NCT03821038&draw=2&rank=1 .

14.
Shock ; 59(2): 145-154, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36730790

ABSTRACT

ABSTRACT: Burn injury is a significant source of morbidity and mortality in the pediatric population. Although 40,000 pediatric patients in the United States are admitted to the hospital with burn wounds annually, significant differences exist in the management and treatment of these patients, even among highly specialized burn centers. Some aspects of pediatric burn research, such as metabolic changes and nutritional support after burn injury, have been studied extensively; however, in many aspects of burn care, pediatric research lags behind the study of adult populations. This review compares and contrasts a wide array of physiologic and immune responses between children and adults after burn injury. Such a review elucidates where robust research has been conducted, where adult research is applicable to pediatric patients, and where additional pediatric burn research needs to be conducted.


Subject(s)
Burn Units , Hospitalization , Child , Humans , Adult , United States , Hospitals , Retrospective Studies
15.
Shock ; 59(2): 125-134, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36383390

ABSTRACT

ABSTRACT: Sepsis, a dysregulated host immune response to infection, is one of the leading causes of neonatal mortality worldwide. Improved understanding of the perinatal immune system is critical to improve therapies to both term and preterm neonates at increased risk of sepsis. Our narrative outlines the known and unknown aspects of the human immune system through both the immune tolerant in utero period and the rapidly changing antigen-rich period after birth. We will highlight the key differences in innate and adaptive immunity noted through these developmental stages and how the unique immune phenotype in early life contributes to the elevated risk of overwhelming infection and dysregulated immune responses to infection upon exposure to external antigens shortly after birth. Given an initial dependence on neonatal innate immune host responses, we will discuss the concept of innate immune memory, or "trained immunity," and describe several potential immune modulators, which show promise in altering the dysregulated immune response in newborns and improving resilience to sepsis.


Subject(s)
Neonatal Sepsis , Sepsis , Pregnancy , Female , Infant, Newborn , Humans , Trained Immunity , Adaptive Immunity , Immunity, Innate/physiology
16.
Am Surg ; 89(6): 2563-2571, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35593749

ABSTRACT

INTRODUCTION: Survivors of sepsis will progress towards rapid recovery (RAP) or enter a state of persistent organ dysfunction and chronic critical illness (CCI). Independently, anemia is known to be a significant factor in functional recovery of hospitalized patients. This study aims to analyze long-term hemoglobin levels and functional outcomes following RAP and CCI. METHODS: A prospective, cohort study was performed in septic patients who were stratified into RAP (N = 54) with ICU length of stay < 14 days or CCI (N = 63) with ICU length of stay > 14 days. CBC and plasma inflammatory markers were measured on the day of enrollment, weekly until day 42, then at 3 and 6 months. Functional outcomes using Zubrod scale, gait speed test, and total short physical performance battery (SPPB) were assessed at 3, 6, and 12 months. RESULTS: Mean age was 59 years (range: 20-83) and 62% were male. Hemoglobin was significantly decreased at 3 and 6 months in CCI compared to RAP (8.9* and 9.2* vs 10.4 and 11.1 g/dL), despite receiving significantly more red blood cell transfusions. CCI patients had persistent elevation of CRP, IL-6 and TNF-α. CCI patients had worse functional outcome with a significantly higher Zubrod score, and lower SPPB, and gait speed score at 3, 6, and 12 months. CONCLUSION: Despite receiving more pRBC transfusions, CCI patients had a persistent anemia that was associated with chronic systemic inflammation and poor functional outcomes six months following sepsis. Alleviating prolonged inflammation could improve persistent anemia and functional outcomes in CCI patients.


Subject(s)
Anemia , Sepsis , Humans , Male , Middle Aged , Female , Cohort Studies , Prospective Studies , Critical Illness , Sepsis/complications , Sepsis/therapy , Inflammation/complications , Anemia/complications , Anemia/therapy , Intensive Care Units
17.
J Leukoc Biol ; 112(6): 1525-1534, 2022 12.
Article in English | MEDLINE | ID: mdl-36193662

ABSTRACT

Sepsis remains the single most common cause of mortality and morbidity in hospitalized patients requiring intensive care. Although earlier detection and improved treatment bundles have reduced in-hospital mortality, long-term recovery remains dismal. Sepsis survivors who experience chronic critical illness often demonstrate persistent inflammation, immune suppression, lean tissue wasting, and physical and functional cognitive declines, which often last in excess of 1 year. Older patients and those with preexisting comorbidities may never fully recover and have increased mortality compared with individuals who restore their immunologic homeostasis. Many of these responses are shared with individuals with advanced cancer, active autoimmune diseases, chronic obstructive pulmonary disease, and chronic renal disease. Here, we propose that this resulting immunologic endotype is secondary to a persistent maladaptive reprioritization of myelopoiesis and pathologic activation of myeloid cells. Driven in part by the continuing release of endogenous alarmins from chronic organ injury and muscle wasting, as well as by secondary opportunistic infections, ongoing myelopoiesis at the expense of lymphopoiesis and erythropoiesis leads to anemia, recurring infections, and lean tissue wasting. Early recognition and intervention are required to interrupt this pathologic activation of myeloid populations.


Subject(s)
Critical Illness , Sepsis , Humans , Critical Illness/therapy , Myelopoiesis , Neoplasm Recurrence, Local , Sepsis/etiology , Survivors , Chronic Disease
18.
JAMA Netw Open ; 5(7): e2221520, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35819783

ABSTRACT

Importance: Rapid and accurate discrimination of sepsis and its potential severity currently require multiple assays with slow processing times that are often inconclusive in discerning sepsis from sterile inflammation. Objective: To analyze a whole-blood, multivalent, host-messenger RNA expression metric for estimating the likelihood of bacterial infection and 30-day mortality and compare performance of the metric with that of other diagnostic and prognostic biomarkers and clinical parameters. Design, Setting, and Participants: This prospective diagnostic and prognostic study was performed in the surgical intensive care unit (ICU) of a single, academic health science center. The analysis included 200 critically ill adult patients admitted with suspected sepsis (cohort A) or those at high risk for developing sepsis (cohort B) between July 1, 2020, and July 30, 2021. Exposures: Whole-blood sample measurements of a custom 29-messenger RNA transcriptomic metric classifier for likelihood of bacterial infection (IMX-BVN-3) or 30-day mortality (severity) (IMX-SEV-3) in a clinical-diagnostic laboratory setting using an analysis platform (510[k]-cleared nCounter FLEX; NanoString, Inc), compared with measurement of procalcitonin and interleukin 6 (IL-6) plasma levels, and maximum 24-hour sequential organ failure assessment (SOFA) scores. Main Outcomes and Measures: Estimated sepsis and 30-day mortality performance. Results: Among the 200 patients included (124 men [62.0%] and 76 women [38.0%]; median age, 62.5 [IQR, 47.0-72.0] years), the IMX-BVN-3 bacterial infection classifier had an area under the receiver operating characteristics curve (AUROC) of 0.84 (95% CI, 0.77-0.90) for discriminating bacterial infection at ICU admission, similar to procalcitonin (0.85 [95% CI, 0.79-0.90]; P = .79) and significantly better than IL-6 (0.67 [95% CI, 0.58-0.75]; P < .001). For estimating 30-day mortality, the IMX-SEV-3 metric had an AUROC of 0.81 (95% CI, 0.66-0.95), which was significantly better than IL-6 levels (0.57 [95% CI, 0.37-0.77]; P = .006), marginally better than procalcitonin levels (0.65 [95% CI, 0.50-0.79]; P = .06), and similar to the SOFA score (0.76 [95% CI, 0.62-0.91]; P = .48). Combining IMX-BVN-3 and IMX-SEV-3 with procalcitonin or IL-6 levels or SOFA scores did not significantly improve performance. Among patients with sepsis, IMX-BVN-3 scores decreased over time, reflecting the resolution of sepsis. In 11 individuals at high risk (cohort B) who subsequently developed sepsis during their hospital course, IMX-BVN-3 bacterial infection scores did not decline over time and peaked on the day of documented infection. Conclusions and Relevance: In this diagnostic and prognostic study, a novel, multivalent, transcriptomic metric accurately estimated the presence of bacterial infection and risk for 30-day mortality in patients admitted to a surgical ICU. The performance of this single transcriptomic metric was equivalent to or better than multiple alternative diagnostic and prognostic metrics when measured at admission and provided additional information when measured over time.


Subject(s)
Critical Illness , Sepsis , Adult , Female , Hospital Mortality , Humans , Interleukin-6 , Male , Middle Aged , Procalcitonin , Prospective Studies , RNA, Messenger , Transcriptome
20.
BMC Infect Dis ; 22(1): 563, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35725405

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication that can develop weeks to months after an initial SARS-CoV-2 infection. A complex, time-consuming laboratory evaluation is currently required to distinguish MIS-C from other illnesses. New assays are urgently needed early in the evaluation process to expedite MIS-C workup and initiate treatment when appropriate. This study aimed to measure the performance of a monocyte anisocytosis index, obtained on routine complete blood count (CBC), to rapidly identify subjects with MIS-C at risk for cardiac complications. METHODS: We measured monocyte anisocytosis, quantified by monocyte distribution width (MDW), in blood samples collected from children who sought medical care in a single medical center from April 2020 to October 2020 (discovery cohort). After identifying an effective MDW threshold associated with MIS-C, we tested the utility of MDW as a tier 1 assay for MIS-C at multiple institutions from October 2020 to October 2021 (validation cohort). The main outcome was the early screening of MIS-C, with a focus on children with MIS-C who displayed cardiac complications. The screening accuracy of MDW was compared to tier 1 routine laboratory tests recommended for evaluating a child for MIS-C. RESULTS: We enrolled 765 children and collected 846 blood samples for analysis. In the discovery cohort, monocyte anisocytosis, quantified as an MDW threshold of 24.0, had 100% sensitivity (95% CI 78-100%) and 80% specificity (95% CI 69-88%) for identifying MIS-C. In the validation cohort, an initial MDW greater than 24.0 maintained a 100% sensitivity (95% CI 80-100%) and monocyte anisocytosis displayed a diagnostic accuracy greater that other clinically available hematologic parameters. Monocyte anisocytosis decreased with disease resolution to values equivalent to those of healthy controls. CONCLUSIONS: Monocyte anisocytosis detected by CBC early in the clinical workup improves the identification of children with MIS-C with cardiac complications, thereby creating opportunities for improving current practice guidelines.


Subject(s)
COVID-19 , COVID-19/complications , COVID-19/diagnosis , Child , Humans , Monocytes , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...