Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1918, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429271

ABSTRACT

The combination of a geometrically frustrated lattice, and similar energy scales between degrees of freedom endows two-dimensional Kagome metals with a rich array of quantum phases and renders them ideal for studying strong electron correlations and band topology. The Kagome metal, FeGe is a noted example of this, exhibiting A-type collinear antiferromagnetic (AFM) order at TN ≈ 400 K, then establishes a charge density wave (CDW) phase coupled with AFM ordered moment below TCDW ≈ 110 K, and finally forms a c-axis double cone AFM structure around TCanting ≈ 60 K. Here we use neutron scattering to demonstrate the presence of gapless incommensurate spin excitations associated with the double cone AFM structure of FeGe at temperatures well above TCanting and TCDW that merge into gapped commensurate spin waves from the A-type AFM order. Commensurate spin waves follow the Bose factor and fit the Heisenberg Hamiltonian, while the incommensurate spin excitations, emerging below TN where AFM order is commensurate, start to deviate from the Bose factor around TCDW, and peaks at TCanting. This is consistent with a critical scattering of a second order magnetic phase transition with decreasing temperature. By comparing these results with density functional theory calculations, we conclude that the incommensurate magnetic structure arises from the nested Fermi surfaces of itinerant electrons and the formation of a spin density wave order.

2.
J Phys Condens Matter ; 51(2)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36317304

ABSTRACT

The inelastic neutron scattering spectra recorded in this study and elsewhere provide a useful set of crystal-field (CF) energy levels for the groundJ= 6 term of Ho3+in HoFeO3. The resolution of the low-energy, temperature-dependent pseudo-quadrupole ground state splitting and magnon peaks is consistent with the self-ordering of the Ho3+sublattice atTHo∼ 8-10 K and supports earlier electron spin resonance investigations of the Ho3+magnon behaviour. Systematic analysis of the grouped singlet CF levels of Ho3: HoFeO3, in conjunction with the CF Kramers doublet levels of the neighbouring Er3+: ErFeO3, has yielded possible sets of CF parameters for the two systems.

3.
Sci Rep ; 9(1): 14468, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31594985

ABSTRACT

We report on the magnetism of charge-stripe ordered La2NiO4.11±0.01 by neutron scattering and µSR. On going towards zero energy transfer there is an observed wave vector offset in the centring of the magnetic excitations and magnetic Bragg reflections, meaning the excitations cannot be described as Goldstone modes of the magnetic order. Weak transverse field µSR measurements determine the magnetically order volume fraction is 87% from the two stripe twins, and the temperature evolution of the magnetic excitations is consistent with the low energy excitations coming from the magnetically ordered volume of the material. We will discuss how these results contrast with the proposed origin of a similar wave vector offset recently observed in a La-based cuprate, and possible origins of this effect in La2NiO4.11.

4.
J Phys Condens Matter ; 30(21): 215602, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29651987

ABSTRACT

Recently a new one-dimensional (1D) quantum spin chain system has been reported: catena-dichloro(2-Cl-3Mpy)copper(II), (where 2-Cl-3Mpy=2-chloro-3-methylpyridine). Preliminary calculations and bulk magnetic property measurements indicate that this system does not undergo magnetic ordering down to 1.8 K and is a prime candidate for investigating frustration in a J 1/J 2 system (where the nearest neighbour interactions, J 1, are ferromagnetic and the next nearest neighbour interactions, J 2, are antiferromagnetic). Calculations predicted three possible magnetic interaction strengths for J 1 below 6 meV depending on the orientation of the ligand. For one of the predicted J 1 values, the existence of a quantum critical point is implied. A deuterated sample of catena-dichloro(2-Cl-3Mpy)copper(II) was synthesised and the excitations measured using inelastic neutron scattering. Scattering indicated the most likely scenario involves spin-chains where each chain consists of only one of the three possible magnetic excitations in this material, rather than the completely random array of exchange interactions within each chain as predicted by Herringer et al (2014 Chem. Eur. J. 20 8355-62). This indicates the possibility of tuning the chemical structure to favour a system which may exhibit a quantum critical point.

5.
Phys Rev Lett ; 120(7): 077201, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29542973

ABSTRACT

Fedotovite K_{2}Cu_{3}O(SO_{4})_{3} is a candidate of new quantum spin systems, in which the edge-shared tetrahedral (EST) spin clusters consisting of Cu^{2+} are connected by weak intercluster couplings forming a one-dimensional array. Comprehensive experimental studies by magnetic susceptibility, magnetization, heat capacity, and inelastic neutron scattering measurements reveal the presence of an effective S=1 Haldane state below T≅4 K. Rigorous theoretical studies provide an insight into the magnetic state of K_{2}Cu_{3}O(SO_{4})_{3}: an EST cluster makes a triplet in the ground state and a one-dimensional chain of the EST induces a cluster-based Haldane state. We predict that the cluster-based Haldane state emerges whenever the number of tetrahedra in the EST is even.

6.
J Phys Condens Matter ; 29(43): 435801, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28825593

ABSTRACT

Specific heat, magnetic susceptibility, and neutron scattering have been used to investigate the nature of the spin system in the antiferromagnet Nd3Co4Sn13. At room temperature Nd3Co4Sn13 has a cubic, Pm-3n structure similar to Yb3Rh4Sn13. Antiferromagnetic interactions between, Nd3+ ions dominate the magnetic character of this sample and at 2.4 K the Nd spins enter a long range order state with a magnetic propagation vector q = (0 0 0) with an ordered moment of 1.78(2) µB at 1.5 K. The magnetic Bragg intensity grows very slowly below 1 K, reaching ~2.4 µB at 350 mK. The average magnetic Nd3+ configuration corresponds to the 3D irreducible representation Γ7. This magnetic structure can be viewed as three sublattices of antiferromagnetic spin chains coupled with each other in the 120°-configuration. A well-defined magnetic excitation was measured around the 1 1 1 zone centre and the resulting dispersion curve is appropriate for an antiferromagnet with a gap of 0.20(1) meV.

7.
Phys Rev Lett ; 117(23): 238102, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27982649

ABSTRACT

We experimentally observed considerable solubility of tryptophan (Trp) in a CuCl_{2} aqueous solution, which could reach 2-5 times the solubility of Trp in pure water. Theoretical studies show that the strong cation-π interaction between Cu^{2+} and the aromatic ring in Trp modifies the electronic distribution of the aromatic ring to enhance significantly the water affinity of Trp. Similar solubility enhancement has also been observed for other divalent transition-metal cations (e.g., Zn^{2+} and Ni^{2+}), another aromatic amino acid (phenylalanine), and three aromatic peptides (Trp-Phe, Phe-Phe, and Trp-Ala-Phe).


Subject(s)
Amino Acids/chemistry , Peptides/chemistry , Solubility , Cations/chemistry , Cations, Divalent , Dipeptides , Metals , Phenylalanine , Transition Elements , Tryptophan/chemistry
8.
Nanoscale ; 8(15): 7845-8, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27021047

ABSTRACT

Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators.

9.
Nature ; 468(7321): 283-5, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-21068838

ABSTRACT

The elucidation of the pseudogap phenomenon of the high-transition-temperature (high-T(c)) copper oxides-a set of anomalous physical properties below the characteristic temperature T* and above T(c)-has been a major challenge in condensed matter physics for the past two decades. Following initial indications of broken time-reversal symmetry in photoemission experiments, recent polarized neutron diffraction work demonstrated the universal existence of an unusual magnetic order below T* (refs 3, 4). These findings have the profound implication that the pseudogap regime constitutes a genuine new phase of matter rather than a mere crossover phenomenon. They are furthermore consistent with a particular type of order involving circulating orbital currents, and with the notion that the phase diagram is controlled by a quantum critical point. Here we report inelastic neutron scattering results for HgBa(2)CuO(4+δ) that reveal a fundamental collective magnetic mode associated with the unusual order, and which further support this picture. The mode's intensity rises below the same temperature T* and its dispersion is weak, as expected for an Ising-like order parameter. Its energy of 52-56 meV renders it a new candidate for the hitherto unexplained ubiquitous electron-boson coupling features observed in spectroscopic studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...