Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 103(6): e3690, 2022 06.
Article in English | MEDLINE | ID: mdl-35322403

ABSTRACT

The relative roles of plants competing for resources versus top-down control of vegetation by herbivores, in turn impacted by predators, during early stages of tropical forest succession remain poorly understood. Here we examine the impact of insectivorous birds, bats, and ants exclusion on arthropods communities on replicated 5 × 5 m of pioneering early successional vegetation plots in lowland tropical forest gaps in Papua New Guinea. In plots from which focal taxa of predators were excluded we observed increased biomass of herbivorous and predatory arthropods, and increased density, and decreased diversity of herbivorous insects. However, changes in the biomass of plants, herbivores, and arthropod predators were positively correlated or uncorrelated between these three trophic levels and also between individual arthropod orders. Arthropod abundance and biomass correlated strongly with the plant biomass irrespective of the arthropods' trophic position, a signal of bottom-up control. Patterns in herbivore specialization confirm lack of a strong top-down control and were largely unaffected by the exclusion of insectivorous birds, bats, and ants. No changes of plant-herbivore interaction networks were detected except for decrease in modularity of the exclosure plots. Our results suggest weak top-down control of herbivores, limited compensation between arthropod and vertebrate predators, and limited intra-guild predation by birds, bats, and ants. Possible explanations are strong bottom-up control, a low activity of the higher order predators, especially birds, possibly also bats, in gaps, and continuous influx of herbivores from surrounding mature forest matrix.


Subject(s)
Ants , Arthropods , Chiroptera , Animals , Birds , Forests , Plants , Predatory Behavior
2.
Ecol Evol ; 11(12): 8085-8095, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188873

ABSTRACT

Tropical forests are notable for their high species diversity, even on small spatial scales, and right-skewed species and size abundance distributions. The role of individual species as drivers of the spatial organization of diversity in these forests has been explained by several hypotheses and processes, for example, stochastic dilution, negative density dependence, or gap dynamics. These processes leave a signature in spatial distribution of small trees, particularly in the vicinity of large trees, likely having stronger effects on their neighbors. We are exploring species diversity patterns within the framework of various diversity-generating hypotheses using individual species-area relationships. We used the data from three tropical forest plots (Wanang-Papua New Guinea, Barro Colorado Island-Panama, and Sinharaja-Sri Lanka) and included also the saplings (DBH ≥ 1 cm). Resulting cross-size patterns of species richness and evenness reflect the dynamics of saplings affected by the distribution of large trees. When all individuals with DBH ≥1 cm are included, ~50% of all tree species from the 25- or 50-ha plot can be found within 35 m radius of an individual tree. For all trees, 72%-78% of species were identified as species richness accumulators, having more species present in their surroundings than expected by null models. This pattern was driven by small trees as the analysis of DBH >10 cm trees showed much lower proportion of accumulators, 14%-65% of species identified as richness repellers and had low richness of surrounding small trees. Only 11%-26% of species had lower species evenness than was expected by null models. High proportions of species richness accumulators were probably due to gap dynamics and support Janzen-Connell hypothesis driven by competition or top-down control by pathogens and herbivores. Observed species diversity patterns show the importance of including small tree size classes in analyses of the spatial organization of diversity.

3.
Oecologia ; 196(1): 101-113, 2021 May.
Article in English | MEDLINE | ID: mdl-33950380

ABSTRACT

While there are numerous studies of diversity patterns both within local communities and at regional scales, the intermediate scale of tens to thousands of km2 is often neglected. Here we present detailed local data on plant communities (using 20 × 20 m plots) and bird communities (using point counts) for a 50 ha ForestGEO plot in lowland rainforest at Wanang, Papua New Guinea. We compare these local diversity patterns with those documented in the surrounding 10,000 ha of lowland rainforest. Woody plant species richness was lower within 50 ha (88% of 10,000 ha richness), even when both were surveyed with identical sampling effort. In contrast, bird communities exhibited identical species accumulation patterns at both spatial scales. Similarity in species composition (Chao-Jaccard) remained constant while similarity in dominance structure (Bray-Curtis) decreased with increased distance between samples across the range from < 1 to 13.8 km for both plant and bird communities. The similarity decay was more rapid in plants, but in both cases was slow. The results indicate low to zero beta-diversity at the spatial scale represented here, particularly for birds but also for woody plants. A 50 ha plot provided a highly accurate representation of broader-scale diversity and community composition within 10,000 ha for birds, and a relatively good representation for woody plants. This suggests potential for wider generalization of data from ForestGEO plots which are almost always locally unreplicated, at least for those in lowland tropical forest.


Subject(s)
Biodiversity , Rainforest , Animals , Birds , Ecosystem , Forests , Plants , Trees , Tropical Climate
4.
Ecol Lett ; 23(10): 1499-1510, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32808457

ABSTRACT

In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross-continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf-chewing and leaf-mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter-guild competition and top-down regulation of herbivores by predators. Inter-guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom-up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.


Subject(s)
Arthropods , Spiders , Animals , Herbivory , Predatory Behavior , Trees
5.
Nature ; 584(7822): 531-533, 2020 08.
Article in English | MEDLINE | ID: mdl-32760035

Subject(s)
Plants , Islands , New Guinea
6.
PLoS One ; 14(10): e0222119, 2019.
Article in English | MEDLINE | ID: mdl-31644586

ABSTRACT

Research on canopy arthropods has progressed from species inventories to the study of their interactions and networks, enhancing our understanding of how hyper-diverse communities are maintained. Previous studies often focused on sampling individual tree species, individual trees or their parts. We argue that such selective sampling is not ideal when analyzing interaction network structure, and may lead to erroneous conclusions. We developed practical and reproducible sampling guidelines for the plot-based analysis of arthropod interaction networks in forest canopies. Our sampling protocol focused on insect herbivores (leaf-chewing insect larvae, miners and gallers) and non-flying invertebrate predators (spiders and ants). We quantitatively sampled the focal arthropods from felled trees, or from trees accessed by canopy cranes or cherry pickers in 53 0.1 ha forest plots in five biogeographic regions, comprising 6,280 trees in total. All three methods required a similar sampling effort and provided good foliage accessibility. Furthermore, we compared interaction networks derived from plot-based data to interaction networks derived from simulated non-plot-based data focusing either on common tree species or a representative selection of tree families. All types of non-plot-based data showed highly biased network structure towards higher connectance, higher web asymmetry, and higher nestedness temperature when compared with plot-based data. Furthermore, some types of non-plot-based data showed biased diversity of the associated herbivore species and specificity of their interactions. Plot-based sampling thus appears to be the most rigorous approach for reconstructing realistic, quantitative plant-arthropod interaction networks that are comparable across sites and regions. Studies of plant interactions have greatly benefited from a plot-based approach and we argue that studies of arthropod interactions would benefit in the same way. We conclude that plot-based studies on canopy arthropods would yield important insights into the processes of interaction network assembly and dynamics, which could be maximised via a coordinated network of plot-based study sites.


Subject(s)
Arthropods/physiology , Host-Parasite Interactions , Plants/parasitology , Animals , Forests , Larva/physiology , Trees/parasitology
7.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29118136

ABSTRACT

A long-term goal in evolutionary ecology is to explain the incredible diversity of insect herbivores and patterns of host plant use in speciose groups like tropical Lepidoptera. Here, we used standardized food-web data, multigene phylogenies of both trophic levels and plant chemistry data to model interactions between Lepidoptera larvae (caterpillars) from two lineages (Geometridae and Pyraloidea) and plants in a species-rich lowland rainforest in New Guinea. Model parameters were used to make and test blind predictions for two hectares of an exhaustively sampled forest. For pyraloids, we relied on phylogeny alone and predicted 54% of species-level interactions, translating to 79% of all trophic links for individual insects, by sampling insects from only 15% of local woody plant diversity. The phylogenetic distribution of host-plant associations in polyphagous geometrids was less conserved, reducing accuracy. In a truly quantitative food web, only 40% of pair-wise interactions were described correctly in geometrids. Polyphenol oxidative activity (but not protein precipitation capacity) was important for understanding the occurrence of geometrids (but not pyraloids) across their hosts. When both foliar chemistry and plant phylogeny were included, we predicted geometrid-plant occurrence with 89% concordance. Such models help to test macroevolutionary hypotheses at the community level.


Subject(s)
Food Chain , Herbivory , Moths/physiology , Plant Leaves/chemistry , Animals , Larva/growth & development , Larva/physiology , Models, Biological , Moths/growth & development , New Guinea , Phylogeny , Plants , Rainforest
8.
PLoS One ; 12(2): e0171843, 2017.
Article in English | MEDLINE | ID: mdl-28231249

ABSTRACT

We studied a community of frugivorous Lepidoptera in the lowland rainforest of Papua New Guinea. Rearing revealed 122 species represented by 1,720 individuals from 326 woody plant species. Only fruits from 52% (171) of the plant species sampled were attacked. On average, Lepidoptera were reared from 1 in 89 fruits and a kilogram of fruit was attacked by 1.01 individuals. Host specificity of Lepidoptera was notably low: 69% (33) of species attacked plants from >1 family, 8% (4) fed on single family, 6% (3) on single genus and 17% (8) were monophagous. The average kilogram of fruits was infested by 0.81 individual from generalist species (defined here as feeding on >1 plant genus) and 0.07 individual from specialist species (feeding on a single host or congeneric hosts). Lepidoptera preferred smaller fruits with both smaller mesocarp and seeds. Large-seeded fruits with thin mesocarp tended to host specialist species whereas those with thick, fleshy mesocarp were often infested with both specialist and generalist species. The very low incidence of seed damage suggests that pre-dispersal seed predation by Lepidoptera does not play a major role in regulating plant populations via density-dependent mortality processes outlined by the Janzen-Connell hypothesis.


Subject(s)
Herbivory , Lepidoptera/physiology , Plants/parasitology , Rainforest , Animals , Fruit/parasitology , Fruit/physiology , Host Specificity , Papua New Guinea , Plant Diseases/parasitology , Plant Physiological Phenomena , Seeds/parasitology , Seeds/physiology
9.
Nature ; 448(7154): 692-5, 2007 Aug 09.
Article in English | MEDLINE | ID: mdl-17687324

ABSTRACT

Recent advances in understanding insect communities in tropical forests have contributed little to our knowledge of large-scale patterns of insect diversity, because incomplete taxonomic knowledge of many tropical species hinders the mapping of their distribution records. This impedes an understanding of global biodiversity patterns and explains why tropical insects are under-represented in conservation biology. Our study of approximately 500 species from three herbivorous guilds feeding on foliage (caterpillars, Lepidoptera), wood (ambrosia beetles, Coleoptera) and fruit (fruitflies, Diptera) found a low rate of change in species composition (beta diversity) across 75,000 square kilometres of contiguous lowland rainforest in Papua New Guinea, as most species were widely distributed. For caterpillars feeding on large plant genera, most species fed on multiple host species, so that even locally restricted plant species did not support endemic herbivores. Large plant genera represented a continuously distributed resource easily colonized by moths and butterflies over hundreds of kilometres. Low beta diversity was also documented in groups with differing host specificity (fruitflies and ambrosia beetles), suggesting that dispersal limitation does not have a substantial role in shaping the distribution of insect species in New Guinea lowland rainforests. Similar patterns of low beta diversity can be expected in other tropical lowland rainforests, as they are typically situated in the extensive low basins of major tropical rivers similar to the Sepik-Ramu region of New Guinea studied here.


Subject(s)
Biodiversity , Diet , Insecta/physiology , Trees , Tropical Climate , Animals , Geography , Papua New Guinea
SELECTION OF CITATIONS
SEARCH DETAIL
...