Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int Rev Cell Mol Biol ; 379: 241-261, 2023.
Article in English | MEDLINE | ID: mdl-37541726

ABSTRACT

Oncolytic virus therapy (OVT) is a promising modality that leverages the propensity of natural or engineered viruses to selectively replicate in and kill cancer cells. Over the past decade, (pre)clinical studies have focused on the development and testing of adenovirus, herpes simplex virus, and vaccinia virus-based vectors. These studies have identified barriers to success confronting the field. Here, we propose a set of selection criteria or ideal properties of a successful oncolytic virus, which include lack of pathogenicity, low seroprevalence, selectivity (infection and replication), transgene carrying capacity, and genome stability. We use these requirements to analyze the oncolytic virus landscape, and then identify a potentially optimal species for platform development - vesicular stomatitis virus.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Oncolytic Viruses/genetics , Seroepidemiologic Studies , Vesicular stomatitis Indiana virus/genetics
2.
FASEB J ; 36(7): e22298, 2022 07.
Article in English | MEDLINE | ID: mdl-35670763

ABSTRACT

Endothelial progenitor cells (EPCs) contribute to de novo angiogenesis, tissue regeneration, and remodeling. Interleukin 10 (IL-10), an anti-inflammatory cytokine that primarily signals via STAT3, has been shown to drive EPC recruitment to injured tissues. Our previous work demonstrated that overexpression of IL-10 in dermal wounds promotes regenerative tissue repair via STAT3-dependent regulation of fibroblast-specific hyaluronan synthesis. However, IL-10's role and specific mode of action on EPC recruitment, particularly in dermal wound healing and neovascularization in both normal and diabetic wounds, remain to be defined. Therefore, inducible skin-specific STAT3 knockdown mice were studied to determine IL-10's impact on EPCs, dermal wound neovascularization and healing, and whether it is STAT3-dependent. We show that IL-10 overexpression significantly elevated EPC counts in the granulating wound bed, which was associated with robust capillary lumen density and enhanced re-epithelialization of both control and diabetic (db/db) wounds at day 7. We noted increased VEGF and high C-X-C motif chemokine 12 (CXCL12) levels in wounds and a favorable CXCL12 gradient at day 3 that may support EPC mobilization and infiltration from bone marrow to wounds, an effect that was abrogated in STAT3 knockdown wounds. These findings were supported in vitro. IL-10 promoted VEGF and CXCL12 synthesis in primary murine dermal fibroblasts, with blunted VEGF expression upon blocking CXCL12 in the media by antibody binding. IL-10-conditioned fibroblast media also significantly promoted endothelial sprouting and network formation. In conclusion, these studies demonstrate that overexpression of IL-10 in dermal wounds recruits EPCs and leads to increased vascular structures and faster re-epithelialization.


Subject(s)
Diabetes Mellitus , Endothelial Progenitor Cells , Interleukin-10/metabolism , Animals , Culture Media, Conditioned/metabolism , Diabetes Mellitus/metabolism , Endothelial Progenitor Cells/metabolism , Interleukin-10/genetics , Mice , Neovascularization, Physiologic/physiology , STAT3 Transcription Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wound Healing/physiology
3.
J Surg Res ; 244: 502-508, 2019 12.
Article in English | MEDLINE | ID: mdl-31330294

ABSTRACT

BACKGROUND: Pediatric surgeons have long been advocates of basic science research. However, new challenges facing the scientific community have threatened the success of academic surgeons pursuing basic science careers. The purpose of this study was to compare academic pediatric surgeons' perceptions of their ability to effectively conduct basic science research to those of other surgical subspecialties. METHODS: An online survey was distributed to all members of the Association for Academic Surgery and Society of University Surgeons. A total of 1033 members (41%) responded, and 137 (13.3%) were pediatric surgeons. Comparisons were made between the five most-represented surgical subspecialties. Data are presented as reporting percentage and P values by Student's t-test. RESULTS: Among the specialists studied, pediatric surgeons are those most likely to believe that surgeons can succeed as basic scientists in today's research environment. Pediatric surgery reported the highest rates of National Institutes of Health funding of all surgical specialties and the lowest rates of perceived external pressures related to clinical demands, hospital administrative duties, and work-life balance concerns than their surgical peers. CONCLUSIONS: Pediatric surgeons have a more optimistic perspective on the state of basic science research in surgery while exhibiting an enhanced ability to overcome the challenges that surgeon-scientists currently face. Our findings suggest that pediatric surgery may provide a model for succeeding in basic science in today's challenging surgical research environment.


Subject(s)
Academies and Institutes , Pediatrics , Science , Surgeons , Biomedical Research , Humans
4.
FASEB J ; 31(3): 868-881, 2017 03.
Article in English | MEDLINE | ID: mdl-27903619

ABSTRACT

The cytokine IL-10 has potent antifibrotic effects in models of adult fibrosis, but the mechanisms of action are unclear. Here, we report a novel finding that IL-10 triggers a signal transducer and activator of transcription 3 (STAT3)-dependent signaling pathway that regulates hyaluronan (HA) metabolism and drives adult fibroblasts to synthesize an HA-rich pericellular matrix, which mimics the fetal regenerative wound healing phenotype with reduced fibrosis. By using cre-lox-mediated novel, inducible, fibroblast-, keratinocyte-, and wound-specific STAT3-knockdown postnatal mice-plus syngeneic fibroblast cell-transplant models-we demonstrate that the regenerative effects of IL-10 in postnatal wounds are dependent on HA synthesis and fibroblast-specific STAT3-dependent signaling. The importance of IL-10-induced HA synthesis for regenerative wound healing is demonstrated by inhibition of HA synthesis in a murine wound model by administering 4-methylumbelliferone. Although IL-10 and STAT3 signaling were intact, the antifibrotic repair phenotype that is induced by IL-10 overexpression was abrogated in this model. Our data show a novel role for IL-10 beyond its accepted immune-regulatory mechanism. The opportunity for IL-10 to regulate a fibroblast-specific formation of a regenerative, HA-rich wound extracellular matrix may lead to the development of innovative therapies to attenuate postnatal fibrosis in organ systems or diseases in which dysregulated inflammation and HA intersect.-Balaji, S., Wang, X., King, A., Le, L. D., Bhattacharya, S. S., Moles, C. M., Butte, M. J., de Jesus Perez, V. A., Liechty, K. W., Wight, T. N., Crombleholme, T. M., Bollyky, P. L., Keswani, S. G. Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling.


Subject(s)
Fibroblasts/metabolism , Hyaluronic Acid/metabolism , Interleukin-10/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Wound Healing , Animals , Cells, Cultured , Extracellular Matrix/metabolism , Fibroblasts/physiology , Interleukin-10/genetics , Keratinocytes/metabolism , Keratinocytes/physiology , Mice , Mice, Inbred C57BL , STAT3 Transcription Factor/genetics
5.
Ann Surg ; 265(6): 1053-1059, 2017 06.
Article in English | MEDLINE | ID: mdl-27643928

ABSTRACT

OBJECTIVE: The aim of this study was to examine the challenges confronting surgeons performing basic science research in today's academic surgery environment. SUMMARY OF BACKGROUND DATA: Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. METHODS: An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). RESULTS: NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today's environment, including departmental leadership. CONCLUSIONS: We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists.


Subject(s)
Biomedical Research/trends , Surgeons/trends , Biomedical Research/economics , Financing, Government , Forecasting , Humans , National Institutes of Health (U.S.) , Surgeons/education , United States
6.
Wound Repair Regen ; 24(5): 829-840, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27292154

ABSTRACT

Reduced mobilization of endothelial progenitor cells (EPCs) from the bone marrow (BM) and impaired EPC recruitment into the wound represent a fundamental deficiency in the chronic ulcers. However, mechanistic understanding of the role of BM-derived EPCs in cutaneous wound neovascularization and healing remains incomplete, which impedes development of EPC-based wound healing therapies. The objective of this study was to determine the role of EPCs in wound neovascularization and healing both under normal conditions and using single deficiency (EPC) or double-deficiency (EPC + diabetes) models of wound healing. MMP9 knockout (MMP9 KO) mouse model was utilized, where impaired EPC mobilization can be rescued by stem cell factor (SCF). The hypotheses were: (1) MMP9 KO mice exhibit impaired wound neovascularization and healing, which are further exacerbated with diabetes; (2) these impairments can be rescued by SCF administration. Full-thickness excisional wounds with silicone splints to minimize contraction were created on MMP9 KO mice with/without streptozotocin-induced diabetes in the presence or absence of tail-vein injected SCF. Wound morphology, vascularization, inflammation, and EPC mobilization and recruitment were quantified at day 7 postwounding. Results demonstrate no difference in wound closure and granulation tissue area between any groups. MMP9 deficiency significantly impairs wound neovascularization, increases inflammation, decreases collagen deposition, and decreases peripheral blood EPC (pb-EPC) counts when compared with wild-type (WT). Diabetes further increases inflammation, but does not cause further impairment in vascularization, as compared with MMP9 KO group. SCF improves neovascularization and increases EPCs to WT levels (both nondiabetic and diabetic MMP9 KO groups), while exacerbating inflammation in all groups. SCF rescues EPC-deficiency and impaired wound neovascularization in both diabetic and nondiabetic MMP9 KO mice. Overall, the results demonstrate that BM-derived EPCs play a significant role during wound neovascularization and that the SCF-based therapy with controlled inflammation could be a viable approach to enhance healing in chronic diabetic wounds.

7.
J Surg Res ; 190(1): 358-66, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24814764

ABSTRACT

BACKGROUND: Anti-inflammatory cytokine interleukin (IL)-10 has been shown to induce regenerative healing in postnatal wounds. A viral homolog of IL-10 produced by human cytomegalovirus (CMV IL-10) similarly generates potent immunoregulatory effects, but its effects on wound healing have not been investigated. Currently, there are limited cost-effective methods of screening vulnerary therapeutics. Taken together, we aim to develop and validate a novel human ex vivo dermal wound model and hypothesize that CMV IL-10 will enhance dermal wound healing. METHODS: Full-thickness circular (6-mm) explants were taken from surgical skin samples and 3-mm full-thickness wounds were created. Explants were embedded in collagen I matrix and maintained in specially formulated media with the epidermis at air-liquid interface, and treated with human IL-10 or CMV IL-10 (200 ng/mL). The viability of cultured explants was validated by histology and lactate dehydrogenase (LDH) activity. Epithelial gap, epithelial height, basal keratinocyte migration, vascular endothelial growth factor levels, and neovascularization were measured at days 3 and 7 to determine IL-10 effects on wound healing. RESULTS: Culture explants at day 7 appeared similar to fresh skin in morphology, cell, and vessel density. By day 14, the epidermis separated from the dermis and the cell density diminished. Day 7 wounds appeared viable with advancing epithelial and basal keratinocyte migration with no evidence of necrosis. Cytotoxicity analysis via the quantification of LDH revealed no differences between controls and treated groups. There was a slight increase in the quantity of LDH in media at day 3; however, this decreased at day 5 and continued to decline up to day 21. CMV IL-10 treatment resulted in a significant decrease in the epithelial gap and an increase in epithelial height. There were no differences in the rates of basal keratinocyte migration at day 7 between treated and control groups. Interestingly, human IL-10 increased vascular endothelial growth factor expression and neovascularization compared with controls. CONCLUSIONS: The human ex vivo wound model provides a simple and viable design to study dermal wound healing. Both IL-10 homologs demonstrate vulnerary effects. The viral homolog demonstrates enhanced effects on wound closure compared with human IL-10. These data represent a novel tool that can be used to screen therapeutics, such as CMV IL-10, before preclinical studies.


Subject(s)
Cytomegalovirus/chemistry , Interleukin-10/pharmacology , Skin/injuries , Viral Proteins/pharmacology , Wound Healing/drug effects , Cell Movement/drug effects , Humans , L-Lactate Dehydrogenase/analysis , Neovascularization, Physiologic/drug effects , Organ Culture Techniques , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...