Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Article in English | MEDLINE | ID: mdl-38896223

ABSTRACT

The disparity between increased lifespan and healthy aging, marked by prevalent "inflammaging", highlights the global challenge in care of older persons. This study explored the anti-inflammatory effects of Lactiplantibacillus plantarum HEAL9 (LpHEAL9), alone or combined with berries, on older volunteers with chronic low-grade inflammation (LGI). It was a randomized, double-blind, placebo-controlled trial, with a total of 66 volunteers (> 70 years old), randomly assigned, and equally distributed, to placebo, LpHEAL9 or LpHEAL9 + Berries group. After a 2-week run-in period, participants underwent a 4-week dietary intervention. Intake of LpHEAL9 showed a trend towards reduction in serum CRP but without reaching statistical significance. However, LpHEAL9 significantly decreased fecal calprotectin levels compared to placebo. LpHEAL9+Berries did not show any effect on inflammation. Both probiotic groups showed a trend in improving cognitive function albeit not reaching statistical significance. Our findings suggest that the probiotic strain L. plantarum HEAL9 has a modest impact on LGI in a healthy older population (ClinicalTrials.gov ID: NCT02342496).

2.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446076

ABSTRACT

The circulation is a closed system that has been assumed to be free from bacteria, but evidence for the existence of a low-density blood microbiota is accumulating. The present study aimed to map the blood microbiota of outpatients with Crohn's disease (CD) or with ulcerative colitis (UC) by 16S metagenomics. A diverse microbiota was observed in the blood samples. Regardless of the type of disease, the alpha diversity of the microbiota was positively associated with C-reactive protein (CRP). The blood microbiota had a surprisingly high proportion of Proteobacteria in comparison with human oral and colonic microbiotas. There was no clear difference in the overall pattern of the microbiota between CD and UC. A non-template control (NTC) was included in the whole process to control for the potential contamination from the environment and reagents. Certain bacterial taxa were concomitantly detected in both blood samples and NTC. However, Acinetobacter, Lactobacillus, Thermicanus and Paracoccus were found in blood from both CD and UC patients but not in NTC, indicating the existence of a specific blood-borne microbiota in the patients. Achromobacter dominated in all blood samples, but a minor amount was also found in NTC. Micrococcaceae was significantly enriched in CD, but it was also detected in high abundance in NTC. Whether the composition of the blood microbiota could be a marker of a particular phenotype in inflammatory bowel disease (IBD) or whether the blood microbiota could be used for diagnostic or therapeutic purposes deserves further attention.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Microbiota , Humans , C-Reactive Protein , Outpatients , Inflammatory Bowel Diseases/microbiology , Colitis, Ulcerative/microbiology , Crohn Disease/microbiology
3.
Food Chem Toxicol ; 165: 113064, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35561874

ABSTRACT

The market for ready-to eat vegetables is increasing, but unfortunately so do the numbers of food-borne illness outbreaks related to these products. A previous study has identified bacterial strains suitable for biocontrol of leafy green vegetables to reduce the exposure to pathogens in these products. As a tentative safety evaluation, five selected strains (Rhodococcus cerastii MR5x, Bacillus coagulans LMG P-32205, Bacillus coagulans LMG P-32206, Pseudomonas cedrina LMG P-32207 and Pseudomonas punonensis LMG P-32204) were individually compared for immunomodulating effects in mice and in human monocyte-derived dendritic cells (MoDCs). Mice receiving the two B. coagulans strains consistently resemble the immunological response of the normal control, and no, or low, cell activation and pro-inflammatory cytokine expression was observed in MoDCs exposed to B. coagulans strains. However, different responses were seen in the two models for the Gram-negative P. cedrina and the Gram-positive R. cerastii. Moreover, P. punonensis and B. coagulans increased the microbiota diversity in mice as seen by the Shannon-Wiener index. In conclusion, the two strains of B. coagulans showed an immunological response that indicate that they lack pathogenic abilities, thus encouraging further safety evaluation and showing great potential to be used as biocontrol agents on leafy green vegetables.


Subject(s)
Foodborne Diseases , Vegetables , Animals , Bacteria , Dendritic Cells , Foodborne Diseases/epidemiology , Humans , Mice , Plant Leaves
4.
BMC Gastroenterol ; 22(1): 100, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35247974

ABSTRACT

BACKGROUND: Oral administration of health-promoting bacteria is increasingly used in clinical practise. These bacteria have anti-inflammatory characteristics and modulate the immune system without major reported side effects. The mechanisms of action are not yet fully defined. Our aim was to study systemic effects of probiotics by measurements of leukocytes as well as local effects on rectal mucosal biopsies after adding a standardized inflammatory stimulus in vitro. METHODS: Fourteen healthy subjects were randomized to receive 1010 colony forming units/day orally of the probiotic strain Lactiplantibacillus plantarum 299 (Lp299), n = 7, or Bifidobacterium infantis CURE21 (CURE21), n = 7, for six weeks. Rectal biopsies were taken before and after ingestion of either probiotic strain product, for stimulation in vitro with tumour necrosis factor alpha (TNF-α) at 10 and 100 ng/ml respectively up to 8 h. Blood tests were sampled before and after treatment. Lactate dehydrogenase (LDH) confirmed viable tissue. RESULTS: Composition of the intestinal microbiota was not changed. Systemic leukocytes decreased after administration of CURE21 (P<0.05) and Lp299 (P<0.01). Levels of the pro-inflammatory cytokine IL-6 in rectal mucosa after stimulation with TNF-α were attenuated after ingestion of Lp299. No effect was seen with CURE21. CONCLUSIONS: Administration of these probiotic strains to healthy humans show both a systemic and local reduction of inflammatory response by lowering leukocyte counts, and for Lp299 IL-6 levels in rectal mucosa. Probiotics may play an important role in the reduction of inflammatory responses expected after trauma during surgery or after pelvic irradiation. Trial registration Clinical Trials, registration number NCT01534572, retrospectively registered ( http://www.clinicaltrials.gov ).


Subject(s)
Gastrointestinal Microbiome , Probiotics , Bifidobacterium/physiology , Cytokines , Humans , Intestinal Mucosa , Leukocytes , Probiotics/therapeutic use
5.
Front Nutr ; 8: 680771, 2021.
Article in English | MEDLINE | ID: mdl-34249990

ABSTRACT

Disturbances of the gut microbiota may influence the development of various autoimmune diseases. This study investigated the effects of supplementations with the probiotic bacteria, Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2, on the microbial community in children with celiac disease autoimmunity (CDA). The study included 78 genetically predisposed children for celiac disease with elevated levels of tissue transglutaminase autoantibodies (tTGA) signaling for ongoing CDA. Among those children, 38 received a placebo and 40 received the probiotic supplement daily for 6 months. Fecal and plasma samples were collected at baseline and after 3 and 6 months, respectively. The bacterial community was investigated with 16S rRNA gene sequencing and terminal restriction fragment length polymorphism (T-RFLP), and tTGA levels were measured in radiobinding assays. In children that received probiotic supplementation, the relative abundance of Lactobacillaceae increased over time, while it remained unchanged in the placebo group. There was no overall correlation between tTGA levels and bacterial genus except for a positive correlation between Dialister and IgG-tTG in the probiotic group. The abundance of specific bacterial amplicon sequence variant (ASV:s) changed during the study in both groups, indicating that specific bacterial strains might be affected by probiotic supplementation.

6.
Nutrients ; 11(8)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426299

ABSTRACT

Two Lactobacillus strains have proven anti-inflammatory properties by reducing pro-inflammatory responses to antigens. This randomized double-blind placebo-controlled trial tested the hypothesis that L. plantarum HEAL9 and L. paracasei 8700:2 suppress ongoing celiac disease autoimmunity in genetically at risk children on a gluten-containing diet in a longitudinally screening study for celiac disease. Seventy-eight children with celiac disease autoimmunity participated of whom 40 received 1010 CFU/day of L. plantarum HEAL9 and L. paracasei 8700:2 (probiotic group) and 38 children maltodextrin (placebo group) for six months. Blood samples were drawn at zero, three and six months and phenotyping of peripheral blood lymphocytes and IgA and IgG autoantibodies against tissue transglutaminase (tTG) were measured. In the placebo group, naïve CD45RA+ Th cells decreased (p = 0.002) whereas effector and memory CD45RO+ Th cells increased (p = 0.003). In contrast, populations of cells expressing CD4+CD25highCD45RO+CCR4+ increased in the placebo group (p = 0.001). Changes between the groups were observed for NK cells (p = 0.038) and NKT cells (p = 0.008). Median levels of IgA-tTG decreased more significantly over time in the probiotic (p = 0.013) than in the placebo (p = 0.043) group whereas the opposite was true for IgG-tTG (p = 0.062 respective p = 0.008). In conclusion, daily oral administration of L. plantarum HEAL9 and L. paracasei 8700:2 modulate the peripheral immune response in children with celiac disease autoimmunity.


Subject(s)
Autoantibodies/metabolism , Celiac Disease/immunology , GTP-Binding Proteins/immunology , Lacticaseibacillus paracasei , Lactobacillus plantarum , Probiotics/pharmacology , Transglutaminases/immunology , Autoantibodies/immunology , Child , Child, Preschool , Double-Blind Method , Female , Humans , Male , Protein Glutamine gamma Glutamyltransferase 2
7.
Microbiologyopen ; 8(2): e00642, 2019 02.
Article in English | MEDLINE | ID: mdl-29797784

ABSTRACT

Recultured Lactobacillus plantarum 299v-like strains were tested regarding antibiotic susceptibility, and no decrease was detected. Antibiotics are frequently used to treat patients in intensive care units (ICUs) and are associated with a significant risk of selection of resistant bacterial strains. In particular, it is possible that genetic transfer of antibiotic resistance to the resident gastrointestinal flora, as well as to administered probiotics, may be increased in the ICU setting. The aim of the present investigation was to detect possible changes in antimicrobial susceptibility in reisolates of the probiotic strain Lactobacillus plantarum 299v (Lp299v) given to antibiotic treated, critically ill patients. Lp299v-like strains were identified in cultures of biopsies and fecal samples from 32 patients given the probiotic strain enterally in two previous ICU studies. The patients received a variety of antibiotics. Isolates with the same genomic RAPD profile (RAPD-type) as Lp299v were obtained to enable monitoring of antibiotic susceptibility by E-tests. Forty-two isolates, collected throughout the course of illness, were tested against 22 different antibiotics. No obvious decrease in susceptibility was found for 21 of the tested antibiotics. There was a tendency toward decreased susceptibility to ampicillin. The stable antibiotic susceptibility profiles of the Lp299v-like isolates studied here suggests this probiotic is less likely to acquire resistance when administered to critically ill patients treated with broad-spectrum antibiotics.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Critical Illness , Drug Resistance, Bacterial , Lactobacillus plantarum/drug effects , Lactobacillus plantarum/isolation & purification , Probiotics/administration & dosage , Anti-Bacterial Agents/pharmacology , Biopsy , Disk Diffusion Antimicrobial Tests , Feces/microbiology , Humans , Lactobacillus plantarum/classification , Lactobacillus plantarum/genetics , Molecular Typing , Random Amplified Polymorphic DNA Technique
8.
World J Gastrointest Pathophysiol ; 9(1): 18-27, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29487763

ABSTRACT

AIM: To compare gut bacterial diversity and amount of Enterobacteriaceae in colonic mucosa between patients with and without diverticular disease (DD). METHODS: Patients in a stable clinical condition with planned elective colonoscopy were included. Blood samples and colon mucosa biopsies were collected at the colonoscopy. Study questionnaires including questions about gastrointestinal symptoms were completed by the patients and physicians. DNA from mucosa samples was isolated and the amount of Enterobacteriaceae was estimated using PCR assay. Terminal restriction fragment length polymorphism was applied to assess microbial diversity. Diversity was estimated by calculations of richness (number of terminal restriction fragments) and Shannon-Wiener and Simpson's indices. RESULTS: A total of 51 patients were included, 16 patients with DD [68 (62-76) years] and 35 controls [62 (40-74) years] without any diverticula. Patients with DD had significantly higher levels of Enterobacteriaceae than those without DD (P = 0.043), and there was an inverse relationship between the amount of Enterobacteriaceae and the Simpson's index (rs = -0.361, P = 0.033) and the Shannon-Wiener index (rs = -0.299, P = 0.081). The Simpson's index (P = 0.383), Shannon-Wiener index (P = 0.401) or number of restrictions fragments (P = 0.776) did not differ between DD and controls. The majority of patients experienced gastrointestinal symptoms, and 22 patients (43.1%) fulfilled the criteria for irritable bowel syndrome, with no difference between the groups (P = 0.212). Demography, socioeconomic status, lifestyle habits, inflammatory biomarkers, or symptoms were not related to the amount of Enterobacteriaceae or bacterial diversity. CONCLUSION: Patients with DD had higher amount of Enterobacteriaceae in the colon mucosa compared to patients without diverticula.

9.
Food Sci Nutr ; 5(6): 1215-1220, 2017 11.
Article in English | MEDLINE | ID: mdl-29188050

ABSTRACT

Customer demands for fresh salads are increasing, but leafy green vegetables have also been linked to food-borne illness due to pathogens such as Escherichia coli O157:H7. As a safety measure, consumers often wash leafy vegetables in water before consumption. In this study, we analyzed the efficiency of household washing to reduce the bacterial content. Romaine lettuce and ready-to-eat mixed salad were washed several times in flowing water at different rates and by immersing the leaves in water. Lettuce was also inoculated with E. coli before washing. Only washing in a high flow rate (8 L/min) resulted in statistically significant reductions (p < .05), "Total aerobic count" was reduced by 80%, and Enterobacteriaceae count was reduced by 68% after the first rinse. The number of contaminating E. coli was not significantly reduced. The dominating part of the culturable microbiota of the washed lettuce was identified by rRNA 16S sequencing of randomly picked colonies. The majority belonged to Pseudomonadaceae, but isolates from Enterobacteriaceae and Staphylococcaceaceae were also frequently found. This study shows the inefficiency of tap water washing methods available for the consumer when it comes to removal of bacteria from lettuce. Even after washing, the lettuce contained high levels of bacteria that in a high dose and under certain circumstances may constitute a health risk.

10.
Int J Microbiol ; 2016: 8469018, 2016.
Article in English | MEDLINE | ID: mdl-28101105

ABSTRACT

Objective. To clarify the effect of Lactobacillus plantarum 299v on the salivary cortisol and salivary IgA levels in young adults under examination stress. Design. Forty-one students with an upcoming academic exam were included in a randomized double-blind, placebo-controlled study. The probiotic bacteria or the placebo product was administered in capsules once a day during 14 days. Saliva was collected and a perceived stress test was filled out at each sampling occasion. Saliva was collected for cortisol analysis by Electrochemiluminescence Immunoassay (ECLI) and salivary IgA was analysed by Enzyme-Linked Immunosorbent Assay (ELISA). Abundance of lactobacilli was evaluated by cultivation of saliva on selective medium and identification of L. plantarum 299v was done on randomly selected colonies by a random amplification of polymorphic DNA (RAPD) typing. Results. A significant difference in cortisol levels was found between the treatment group and the placebo group (P < 0.05), together with a significant increase in levels of lactobacilli in the treatment group compared with the placebo group (P < 0.001). No significant changes were found for salivary IgA. Conclusion. A probiotic bacterium with ability to reduce symptoms of irritable bowel syndrome (IBS) prohibited increased levels of the stress marker cortisol during the examination period. The registration number of the study is NCT02974894, and the study is registered at ClinicalTrials.gov.

11.
BMC Res Notes ; 8: 824, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26710832

ABSTRACT

BACKGROUND: The gonadotropin-releasing hormone (GnRH) analog buserelin causes enteric neuronal loss. Acute stress or injection of corticotropin-releasing factor (CRF) affects motility, secretion, and barrier function of the gastrointestinal tract. The aim of the study was to characterize the CRF immunoreactivity in enteric neurons after buserelin treatment, and to evaluate possible effects of enteric neuropathy on gut microbiota, intestinal permeability, and stress response behavior. RESULTS: Sixty rats were given buserelin (20 µg) or saline subcutaneously for 5 days, repeated four times with 3 weeks in-between. At the study end, enteric neuronal density, enteric expression of CRF, gut microbial composition, and plasma levels of adrenocorticotropic hormone (ACTH) and CRF were analyzed. Intestinal permeability was examined in Ussing chambers and the reaction to stressful events was measured by behavior tests. Buserelin treatment reduced the number of neurons along the entire gastrointestinal tract, with increased relative numbers of CRF-immunoreactive submucosal and myenteric neurons in colon (p < 0.05 and p < 0.01, respectively). The overall microbial diversity and relative abundance did not differ between groups, but Enterobacteriaceae was decreased in colon in buserelin-treated rats (p = 0.020). Basal intestinal permeability did not differ between groups, whereas carbachol stimulation increased ileum permeability in controls (p < 0.05), but not in buserelin-treated rats. Buserelin did not affect stress behavior. CONCLUSIONS: Although buserelin treatment leads to enteric neuronal loss along the gastrointestinal tract with an increased percentage of CRF-immunoreactive neurons in colon, the physiology is well preserved, with modest effects on colon microbiota and absence of carbachol-induced permeability in ileum as the only observed changes.


Subject(s)
Acetylcholine/metabolism , Buserelin/adverse effects , Corticotropin-Releasing Hormone/metabolism , Gastrointestinal Microbiome/drug effects , Gonadotropin-Releasing Hormone/analogs & derivatives , Intestinal Diseases/chemically induced , Nervous System Diseases/chemically induced , Animals , Behavior, Animal/drug effects , Colon/drug effects , Enterobacteriaceae/drug effects , Female , Gonadotropin-Releasing Hormone/adverse effects , Ileum/drug effects , Neurons/drug effects , Permeability , Rats
12.
Antonie Van Leeuwenhoek ; 107(1): 149-56, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25358796

ABSTRACT

The composition of the gut microbiota can vary widely between individual mice of the same batch and thereby affect the resulting outcome in experimental studies. Therefore, an efficient method is needed to equalize the gut microbiota prior to the start of critical experiments. In order to minimize variations in gut microbiota between animals and provide the animals with a Gram-negative flora exposing lipopolysaccharides in the cell-walls, C57BL/6 mice were given a mixture of ampicillin, metronidazole and clindamycin in the drinking water for 3 days and then Escherichia coli for two additional days. Treatment with antibiotics alone or with antibiotics in combination with E. coli was well tolerated by all animals. Body weight and liver weight were not affected, although higher hepatic fat content was found in treated animals (p < 0.05). The diversity of the gut microbiota was strongly reduced in animals treated with antibiotics and antibiotics in combination with E. coli (p < 0.01), without affecting the total amount of bacteria. Cloned and sequenced 16S rRNA genes showed high presence of Enterobacteriaceae and Porphymonadaceae in the treated animals. Analysis with Principal Component Analysis gave a clear separation of the composition in microbiota between different treatment groups. The described treatment efficiently equalized the gut microbiota and provided the animals with a strong abundance of Enterobacteriaceae without changing the total load of bacteria. This is a straightforward, lenient and efficient method of pre-treatment to equalize the gut microbiota of mice as a starting procedure of animal studies.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Biota , Escherichia coli/growth & development , Gastrointestinal Tract/microbiology , Microbiological Techniques/methods , Microbiota , Ampicillin , Animals , Clindamycin , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Metronidazole , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
Clin Nutr ; 34(4): 719-26, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25194632

ABSTRACT

BACKGROUND & AIMS: The aim of the present animal study was to examine the anti-hypertensive capacity of two probiotic products combining blueberries and the tannase producing probiotic bacteria Lactobacillus plantarum DSM 15313 and to investigate if such an effect is linked to a change in the gut microbiota. METHODS: Male Sprague Dawley rats were randomly divided into six groups of nine each. Three groups of the animals were treated with N(G)-nitro-L-arginine methyl ester (L-NAME) in the drinking water (40 mg/L) to induce a hypertensive state, and the other three groups were not treated with L-NAME (healthy rats). Two blueberry products differing in their phenolic acid content were tested and each rat received 2 g/day of the fermented blueberry powders for 4 weeks. The effects of the study products on the blood pressure, blood lipids, inflammatory markers, organ weights as well as caecal microbiota of the healthy (non-L-NAME-treated) rats were analyzed. RESULTS: After four weeks, healthy rats consuming freeze dried fermented blueberries with probiotics had a significant reduction in blood pressure compared to the control rats. In rats with L-NAME induced hypertension there was a significant reduction of the blood pressure after two weeks treatment. The probiotic product with a higher content of phenolic acids reduced ALAT in the healthy rats. Furthermore, ingestion of the probiotic blueberry products resulted in changes of the gut microbiota in the healthy rats. CONCLUSIONS: Blueberries fermented with the tannase producing bacteria L. plantarum DSM 15313 have anti-hypertensive properties and may reduce the risk for cardiovascular diseases.


Subject(s)
Antihypertensive Agents/pharmacology , Blueberry Plants/microbiology , Gastrointestinal Microbiome , Lactobacillus plantarum/metabolism , Phytotherapy , Plant Preparations/pharmacology , Animals , Blood Pressure/drug effects , Blueberry Plants/chemistry , Body Weight , Fermentation , Fruit/chemistry , Fruit/microbiology , Heart/drug effects , Hypertension/chemically induced , Hypertension/drug therapy , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , NG-Nitroarginine Methyl Ester/adverse effects , Organ Size/drug effects , Probiotics , Rats , Rats, Sprague-Dawley , Spleen/drug effects , Spleen/metabolism
14.
PLoS One ; 8(11): e80476, 2013.
Article in English | MEDLINE | ID: mdl-24236183

ABSTRACT

INTRODUCTION: Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs), particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation. OBJECTIVE: To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks. MATERIAL AND METHODS: Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin - acetic acid; guar gum - propionic acid; or a mixture - butyric acid). At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks. RESULTS AND DISCUSSION: Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet.


Subject(s)
Butyrates/metabolism , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Dietary Fiber/metabolism , Inflammation/metabolism , Liver/metabolism , Liver/pathology , Succinic Acid/metabolism , Animals , Body Weight , Butyrates/blood , Chemokine CCL2/blood , Cholesterol/blood , Colon/metabolism , Colon/microbiology , Diet , Fatty Acids, Volatile/blood , Fatty Acids, Volatile/metabolism , Male , Microbiota , Organ Size , Pectins/metabolism , Rats , Succinic Acid/blood , Time Factors
15.
J Nutr Metab ; 2013: 202534, 2013.
Article in English | MEDLINE | ID: mdl-23864942

ABSTRACT

Introduction. Berries contain high amounts of dietary fibre and flavonoids and have been associated with improved metabolic health. The mechanisms are not clear but the formation of SCFAs, especially propionic and butyric acids, could be important. The potent antioxidant and antimicrobial properties of flavonoids could also be a factor, but little is known about their fate in the gastrointestinal tract. Aim. To compare how blackcurrants, blackberries, raspberries, and Lactobacillus plantarum HEAL19 affect formation of SCFAs, inflammatory status, caecal microbial diversity, and flavonoids. Results and Conclusions. Degradation of the dietary fibre, formation of SCFAs including propionic and butyric acids, the weight of the caecal content and tissue, and the faecal wet and dry weight were all higher in rats fed blackcurrants rather than blackberries or raspberries. However, the microbial diversity of the gut microbiota was higher in rats fed raspberries. The high content of soluble fibre in blackcurrants and the high proportion of mannose-containing polymers might explain these effects. Anthocyanins could only be detected in urine of rats fed blackcurrants, and the excretion was lower with HEAL19. No anthocyanins or anthocyanidins were detected in caecal content or blood. This may indicate uptake in the stomach or small intestine.

16.
Appl Environ Microbiol ; 79(16): 5030-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23770909

ABSTRACT

Growing evidence indicates that the gut microbiota could have an important role in the development of diet- and lifestyle-induced diseases. It has been shown that modulation of the gut microbiota by means of probiotics and prebiotics could improve host health. An oat-based product fermented by the exopolysaccharide (EPS)-producing organism Pediococcus parvulus 2.6 has been reported to have a bifidogenic effect. To find out whether the effect could be attributed to the EPS or the bacterium, mice were fed a diet supplemented with 2% purified EPS or 10(8) CFU/g of live P. parvulus 2.6 for 6 weeks. Both supplementations altered the gut microbiota composition but in different directions. Purified EPS not only significantly lowered the microbial diversity (P < 0.001) but decreased the bifidobacterial population (P = 0.01). In contrast, the live EPS-producing bacterium P. parvulus 2.6 antagonized Enterobacteriaceae without disturbing the homeostasis of the cecal microbiota.


Subject(s)
Bacteria/drug effects , Cecum/drug effects , Cecum/microbiology , Pediococcus/metabolism , Polysaccharides/administration & dosage , Probiotics/administration & dosage , Animal Feed/analysis , Animals , Avena/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacterial Physiological Phenomena , Body Weight/drug effects , Dietary Supplements/analysis , Enterobacteriaceae/drug effects , Enterobacteriaceae/physiology , Feeding Behavior/drug effects , Female , Fermentation , Metagenome/drug effects , Mice , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
17.
Article in English | MEDLINE | ID: mdl-23690854

ABSTRACT

Prebiotics, probiotics, or synbiotics can be used as means to regulate the microbiota to exert preventative or beneficial effects to the host. However, not much is known about the effect of the gut microbiota on hypertension which is a major risk factor of cardiovascular disease and also a symptom of the metabolic syndrome. The N(G)-nitro-L-arginine methyl ester (L-NAME) induced hypertensive rats were used in order to test the effect of a synbiotic dietary supplement of Lactobacillus plantarum HEAL19 either together with fermented blueberry or with three phenolic compounds synthesized during fermentation. The experimental diets did not lower the blood pressure after 4 weeks. However, the fermented blueberries together with live L. plantarum showed protective effect on liver cells indicated by suppressed increase of serum alanine aminotransferase (ALAT) levels. The diversity of the caecal microbiota was neither affected by L-NAME nor the experimental diets. However, inhibition of the nitric oxide synthesis by L-NAME exerted a selection pressure that led to a shift in the bacterial composition. The mixture of fermented blueberries with the bacterial strain altered the caecal microbiota in different direction compared to L-NAME, while the three phenolic compounds together with the bacteria eliminated the selection pressure from the L-NAME.

18.
J Agric Food Chem ; 61(14): 3468-78, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23488931

ABSTRACT

Intestinal ischemia-reperfusion (I/R) results in oxidative stress, inflammation, and tissue injuries. The present study investigates the antioxidative and anti-inflammatory effects of a dietary supplement of bilberry, either alone or in combination with Lactobacillus plantarum RESO56, L. plantarum HEAL19, or Pediococcus acidilactici JAM046, in an I/R-induced model for oxidative stress in mice. A bilberry diet without addition of bacteria significantly decreased both lipid peroxidation (p = 0.001) and mucosal injury in the ileum. Of 14 anthocyanins identified in bilberry, anthocyanin arabinosides were the most resistant to absorption and microbial degradation in the intestines. Cyanidin-3-glucoside and delphinidin-3-glucoside seemed to be mostly absorbed in the stomach and upper part of the small intestine, while malvidin-3-galactoside, peonidin-3-glucoside, peonidin-3-galactoside, and petunidin-3-galactoside seemed to be digested by the microbiota in the cecum. Bilberry strongly influenced the composition of the cecal microbiota. In conclusion, a food supplement of bilberry protected small intestine against oxidative stress and inflammation induced by ischemia-reperfusion.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antioxidants/therapeutic use , Dietary Supplements , Intestines/blood supply , Oxidative Stress , Reperfusion Injury/prevention & control , Vaccinium myrtillus/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antioxidants/chemistry , Dietary Supplements/analysis , Dietary Supplements/microbiology , Fruit/chemistry , Intestinal Mucosa/blood supply , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestines/immunology , Intestines/microbiology , Intestines/pathology , Ischemia/immunology , Ischemia/microbiology , Ischemia/pathology , Lactobacillus plantarum/growth & development , Lactobacillus plantarum/isolation & purification , Male , Mice , Mice, Inbred BALB C , Pediococcus/growth & development , Pediococcus/isolation & purification , Random Allocation
19.
Eur J Nutr ; 52(7): 1755-69, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23262749

ABSTRACT

PURPOSE: We previously reported that two substrains of C57BL/6 mice respond differently to oats with respect to reduction in plasma cholesterol. Analysis of this difference might offer clues to mechanisms behind the cholesterol-lowering effect of oats. Here, we address the possible roles of hepatic steroid metabolism and the intestinal microbiota in this respect. METHODS: Female C57BL/6 mice were fed an atherogenic diet with oat bran (27 %) or control fibres for 4 weeks. RESULTS: C57BL/6 NCrl mice responded to oat bran with 19 ± 1 % (P < 0.001) lower plasma cholesterol, 40 ± 5% (P < 0.01) higher excretion of bile acids and increased expression of the bile acid-producing hepatic enzymes CYP7A1 and CYP8B1, but none of these effects were found in C57BL/6JBomTac mice. However, on control diet, C57BL/6JBomTac had tenfold higher expression of CYP7A1 and levels of hepatic cholesterol esters than C57BL/6NCrl mice. Plasma levels of fructosamine indicated improved glycemic control by oat bran in C57BL/6NCrl but not in C57BL/6JBomTac. C57BL/6JBomTac had higher intestinal microbiota diversity, but lower numbers of Enterobacteriaceae, Akkermansia and Bacteroides Fragilis than C57BL/6NCrl mice. Oat bran increased bacterial numbers in both substrains. Microbiota diversity was reduced by oats in C57BL/6JBomTac, but unaffected in C57BL/6NCrl. CONCLUSIONS: Our data do not support a connection between altered microbiota diversity and reduced plasma cholesterol, but the bacterial composition in the intestine may influence the effects of added fibres. The cholesterol-lowering properties of oats involve increased production of bile acids via the classical pathway with up-regulation of CYP7A1 and CYP8B1. Altered cholesterol or bile acid metabolism may interfere with the potential of oats to reduce plasma cholesterol.


Subject(s)
Avena/chemistry , Bile Acids and Salts/metabolism , Liver/enzymology , Microbiota , Animals , Body Weight , Cholesterol/blood , Cholesterol 7-alpha-Hydroxylase/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol Esters/metabolism , Diet, Atherogenic , Dietary Fiber/administration & dosage , Feces/chemistry , Female , Fructosamine/blood , Glucose Tolerance Test , Intestinal Absorption/physiology , Intestines/microbiology , Lipid Metabolism , Mice , Mice, Inbred C57BL , Multivariate Analysis , Principal Component Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Steroid 12-alpha-Hydroxylase/genetics , Steroid 12-alpha-Hydroxylase/metabolism , Up-Regulation
20.
J Nutr Sci ; 2: e20, 2013.
Article in English | MEDLINE | ID: mdl-25191569

ABSTRACT

Thylakoid membranes derived from green leaf chloroplasts affect appetite-regulating hormones, suppress food intake, reduce blood lipids and lead to a decreased body weight in animals and human subjects. Thylakoids also decrease the intestinal in vitro uptake of methyl-glucose in the rat. The aim of this study was to investigate the effect of dietary thylakoids on the gut microbiota composition, mainly the taxa of lactobacilli and bifidobacteria, in rats fed either a thylakoid-enriched diet or a control diet for 10 d. At the same time, a glucose-tolerance test in the same rats was also performed. Food intake was significantly decreased in the thylakoid-fed rats compared with the control-fed rats over the 10-d study. An oral glucose tolerance test after 10 d of thylakoid- or control-food intake resulted in significantly reduced plasma insulin levels in the thylakoid-fed rats compared with the control-fed rats, while no difference was observed for blood glucose levels. Analysis of gut bacteria showed a significant increase of lactobacilli on the ileal mucosa, specifically Lactobacillus reuteri, in the rats fed the thylakoid diet compared with rats fed the control diet, while faecal lactobacilli decreased. No difference in bifidobacteria between the thylakoid and control groups was found. Analyses with terminal restriction fragment length polymorphism and principal component analysis of faeces demonstrated different microbial populations in the thylakoid- and control-fed animals. These findings indicate that thylakoids modulate the gut microbial composition, which might be important for the regulation of body weight and energy metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL
...