Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(22): e202403098, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38545954

ABSTRACT

Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.


Subject(s)
Amines , Genetic Code , Tetrahydrofolate Dehydrogenase , Amines/chemistry , Amines/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/metabolism , Biocatalysis , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Protein Engineering , Lysine/chemistry , Lysine/metabolism , Lysine/analogs & derivatives
2.
Adv Sci (Weinh) ; 11(16): e2308956, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38348541

ABSTRACT

Amino acids are indispensable compounds in the body, performing several biological processes that enable proper functioning. In this work, it is demonstrated that a single amino acid, taurine, is also able to promote the ring-opening polymerization (ROP) of several cyclic monomers under industrially relevant conditions. It is shown that the unique zwitterionic structure of taurine, where the negatively charged sulfonic acid group and the protonated amine group are separated by two methylene groups, not only provides high thermal stability but also leads to a dual activation mechanism, which is corroborated by quantum mechanical calculations. This unique mechanism allows for the synthesis of polylactide of up to 50 kDa in bulk at 180 °C with good end-group fidelity using a highly abundant catalyst. Furthermore, cytotoxicity tests confirm that PLLA synthesized with taurine is non-toxic. Moreover, it is demonstrated that the presence of taurine does not have any detrimental effect on the thermal stability of polylactide, and therefore polymers can be used directly without any post-polymerization purification. It is believed that the demonstration that a simple structure composed of a single amino acid can promote polymerization can bring a paradigm shift in the preparation of polymers.

3.
J Chem Theory Comput ; 20(5): 1783-1795, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38410913

ABSTRACT

Enzyme design faces challenges related to the implementation of the basic principles that govern the catalytic activity in natural enzymes. In this work, we revisit basic electrostatic concepts that have been shown to explain the origin of enzymatic efficiency like preorganization and reorganization. Using magnitudes such as the electrostatic potential and the electric field generated by the protein, we explain how these concepts work in different enzymes and how they can be used to rationalize the consequences of point mutations. We also discuss examples of protein design in which electrostatic effects have been implemented. For the near future, molecular simulations, coupled with the use of machine learning methods, can be used to implement electrostatics as a guiding principle for enzyme designs.


Subject(s)
Proteins , Static Electricity , Catalytic Domain
4.
Commun Chem ; 7(1): 15, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238420

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic continues to represent a global public health issue. The viral main protease (Mpro) represents one of the most attractive targets for the development of antiviral drugs. Herein we report peptidyl nitroalkenes exhibiting enzyme inhibitory activity against Mpro (Ki: 1-10 µM) good anti-SARS-CoV-2 infection activity in the low micromolar range (EC50: 1-12 µM) without significant toxicity. Additional kinetic studies of compounds FGA145, FGA146 and FGA147 show that all three compounds inhibit cathepsin L, denoting a possible multitarget effect of these compounds in the antiviral activity. Structural analysis shows the binding mode of FGA146 and FGA147 to the active site of the protein. Furthermore, our results illustrate that peptidyl nitroalkenes are effective covalent reversible inhibitors of the Mpro and cathepsin L, and that inhibitors FGA145, FGA146 and FGA147 prevent infection against SARS-CoV-2.

5.
ACS Catal ; 13(20): 13354-13368, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37881790

ABSTRACT

Cathepsin L (CatL) is a lysosomal cysteine protease whose activity has been related to several human pathologies. However, although preclinical trials using CatL inhibitors were promising, clinical trials have been unsuccessful up to now. We are presenting a study of two designed dipeptidyl keto Michael acceptor potential inhibitors of CatL with either a keto vinyl ester or a keto vinyl sulfone (KVS) warhead. The compounds were synthesized and experimentally assayed in vitro, and their inhibition molecular mechanism was explored based on molecular dynamics simulations at the density functional theory/molecular mechanics level. The results confirm that both compounds inhibit CatL in the nanomolar range and show a time-dependent inhibition. Interestingly, despite both presenting almost equivalent equilibrium constants for the reversible formation of the noncovalent enzyme/inhibitor complex, differences are observed in the chemical step corresponding to the enzyme-inhibitor covalent bond formation, results that are mirrored by the computer simulations. Theoretically determined kinetic and thermodynamic results, which are in very good agreement with the experiments, afford a detailed explanation of the relevance of the different structural features of both compounds having a significant impact on enzyme inhibition. The unprecedented binding interactions of both inhibitors in the P1' site of CatL represent valuable information for the design of inhibitors. In particular, the peptidyl KVS can be used as a starting lead compound in the development of drugs with medical applications for the treatment of cancerous pathologies since sulfone warheads have previously shown promising cell stability compared to other functions such as carboxylic esters. Future improvements can be guided by the atomistic description of the enzyme-inhibitor interactions established along the inhibition reaction derived from computer simulations.

6.
Nat Commun ; 14(1): 3556, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37321996

ABSTRACT

Biocatalysis is a key technology enabling plastic recycling. However, despite advances done in the development of plastic-degrading enzymes, the molecular mechanisms that govern their catalytic performance are poorly understood, hampering the engineering of more efficient enzyme-based technologies. In this work, we study the hydrolysis of PET-derived diesters and PET trimers catalyzed by the highly promiscuous lipase B from Candida antarctica (CALB) through QM/MM molecular dynamics simulations supported by experimental Michaelis-Menten kinetics. The computational studies reveal the role of the pH on the CALB regioselectivity toward the hydrolysis of bis-(hydroxyethyl) terephthalate (BHET). We exploit this insight to perform a pH-controlled biotransformation that selectively hydrolyzes BHET to either its corresponding diacid or monoesters using both soluble and immobilized CALB. The discoveries presented here can be exploited for the valorization of BHET resulting from the organocatalytic depolymerization of PET.


Subject(s)
Enzymes, Immobilized , Lipase , Lipase/metabolism , Hydrolysis , Biocatalysis , Enzymes, Immobilized/chemistry , Plastics/metabolism , Hydrogen-Ion Concentration , Fungal Proteins/metabolism
7.
ACS Catal ; 13(9): 6289-6300, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37180968

ABSTRACT

Cysteine proteases (CPs) are an important class of enzymes, many of which are responsible for several human diseases. For instance, cruzain of protozoan parasite Trypanosoma cruzi is responsible for the Chagas disease, while the role of human cathepsin L is associated with some cancers or is a potential target for the treatment of COVID-19. However, despite paramount work carried out during the past years, the compounds that have been proposed so far show limited inhibitory action against these enzymes. We present a study of proposed covalent inhibitors of these two CPs, cruzain and cathepsin L, based on the design, synthesis, kinetic measurements, and QM/MM computational simulations on dipeptidyl nitroalkene compounds. The experimentally determined inhibition data, together with the analysis and the predicted inhibition constants derived from the free energy landscape of the full inhibition process, allowed describing the impact of the recognition part of these compounds and, in particular, the modifications on the P2 site. The designed compounds and, in particular, the one with a bulky group (Trp) at the P2 site show promising in vitro inhibition activities against cruzain and cathepsin L for use as a starting lead compound in the development of drugs with medical applications for the treatment of human diseases and future designs.

8.
J Am Chem Soc ; 145(12): 6691-6701, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36926902

ABSTRACT

The spliceosome machinery catalyzes precursor messenger (pre-m)RNA splicing. In each cycle, the spliceosome experiences massive compositional and conformational remodeling fueled by the concerted action of specific RNA-dependent ATPases/helicases. Intriguingly, these enzymes are allosterically activated to perform ATP hydrolysis and trigger helicase activity only upon pre-mRNA binding. Yet, the molecular mechanism underlying the RNA-driven regulation of their ATPase function remains elusive. Here, we focus on the Prp2 ATPase/helicase which contributes to reshaping the spliceosome into its catalytic competent state. By performing classical and quantum-classical molecular dynamics simulations, we unprecedentedly unlock the molecular terms governing the Prp2 ATPase/helicase function. Namely, we dissect the molecular mechanism of ATP hydrolysis, and we disclose that RNA binding allosterically triggers the formation of a set of interactions linking the RNA binding tunnel to the catalytic site. This activates the Prp2's ATPase function by optimally placing the nucleophilic water and the general base of the enzymatic process to perform ATP hydrolysis. The key structural motifs, mechanically coupling RNA gripping and the ATPase/helicase functions, are conserved across all DExH-box helicases. This mechanism could thus be broadly applicable to all DExH-box helicase family.


Subject(s)
RNA , Saccharomyces cerevisiae Proteins , RNA/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Hydrolysis , DEAD-box RNA Helicases , RNA Splicing , Spliceosomes/metabolism , RNA Precursors/metabolism , Adenosine Triphosphatases/metabolism , RNA, Messenger/metabolism , Adenosine Triphosphate/metabolism
9.
J Chem Inf Model ; 63(4): 1301-1312, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36762429

ABSTRACT

Targeted covalent inhibitors hold promise for drug discovery, particularly for kinases. Targeting the catalytic lysine of epidermal growth factor receptor (EGFR) has attracted attention as a new strategy to overcome resistance due to the emergence of C797S mutation. Sulfonyl fluoride derivatives able to inhibit EGFRL858R/T790M/C797S by sulfonylation of Lys745 have been reported. However, atomistic details of this process are still poorly understood. Here, we describe the mechanism of inhibition of an innovative class of compounds that covalently engage the catalytic lysine of EGFR, through a sulfur(VI) fluoride exchange (SuFEx) process, with the help of hybrid quantum mechanics/molecular mechanics (QM/MM) and path collective variables (PCVs) approaches. Our simulations identify the chemical determinants accounting for the irreversible activity of agents targeting Lys745 and provide hints for the further optimization of sulfonyl fluoride agents.


Subject(s)
ErbB Receptors , Lung Neoplasms , Humans , ErbB Receptors/metabolism , Lung Neoplasms/genetics , Mutation , Lysine , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics
10.
J Chem Inf Model ; 63(3): 950-958, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36648276

ABSTRACT

Alzheimer's disease represents one of the most ambitious challenges for biomedical sciences due to the growing number of cases worldwide in the elderly population and the lack of efficient treatments. One of the recent attempts to develop a treatment points to the cysteine protease RgpB as a promising drug target. In this attempt, several small-molecule covalent inhibitors of this enzyme have been proposed. Here, we report a computational study at the atomic level of the inhibition mechanism of the most promising reported compounds. Molecular dynamics simulations were performed on six of them, and their binding energies in the active site of the protein were computed. Contact maps and interaction energies were decomposed by residues to disclose those key interactions with the enzyme. Finally, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations were performed to evaluate the reaction mechanism by which these drug candidates lead to covalently bound complexes, inhibiting the RgpB protease. The results provide a guide for future re-design of prospective and efficient inhibitors for the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Gingipain Cysteine Endopeptidases , Aged , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Cysteine Proteases/chemistry , Gingipain Cysteine Endopeptidases/adverse effects , Gingipain Cysteine Endopeptidases/antagonists & inhibitors , Gingipain Cysteine Endopeptidases/metabolism , Molecular Dynamics Simulation
11.
Angew Chem Int Ed Engl ; 62(9): e202217372, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36583658

ABSTRACT

The hydroxylation of fatty acids is an appealing reaction in synthetic chemistry, although the lack of selective catalysts hampers its industrial implementation. In this study, we have engineered a highly regioselective fungal peroxygenase for the ω-1 hydroxylation of fatty acids with quenched stepwise over-oxidation. One single mutation near the Phe catalytic tripod narrowed the heme cavity, promoting a dramatic shift toward subterminal hydroxylation with a drop in the over-oxidation activity. While crystallographic soaking experiments and molecular dynamic simulations shed light on this unique oxidation pattern, the selective biocatalyst was produced by Pichia pastoris at 0.4 g L-1 in a fed-batch bioreactor and used in the preparative synthesis of 1.4 g of (ω-1)-hydroxytetradecanoic acid with 95 % regioselectivity and 83 % ee for the S enantiomer.


Subject(s)
Fatty Acids , Mixed Function Oxygenases , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Fatty Acids/chemistry , Oxidation-Reduction , Hydroxylation
12.
Chem Sci ; 13(17): 4779-4787, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35655887

ABSTRACT

While there has been emerging interest in designing new enzymes to solve practical challenges, computer-based options to redesign catalytically active proteins are rather limited. Here, a rational QM/MM molecular dynamics strategy based on combining the best electrostatic properties of enzymes with activity in a common reaction is presented. The computational protocol has been applied to the re-design of the protein scaffold of an existing promiscuous esterase from Bacillus subtilis Bs2 to enhance its secondary amidase activity. After the alignment of Bs2 with a non-homologous amidase Candida antarctica lipase B (CALB) within rotation quaternions, a relevant spatial aspartate residue of the latter was transferred to the former as a means to favor the electrostatics of transition state formation, where a clear separation of charges takes place. Deep computational insights, however, revealed a significant conformational change caused by the amino acid replacement, provoking a shift in the pK a of the inserted aspartate and counteracting the anticipated catalytic effect. This prediction was experimentally confirmed with a 1.3-fold increase in activity. The good agreement between theoretical and experimental results, as well as the linear correlation between the electrostatic properties and the activation energy barriers, suggest that the presented computational-based investigation can transform in an enzyme engineering approach.

13.
ACS Catal ; 12(1): 698-708, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35036042

ABSTRACT

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, shows the need for effective antiviral treatments. Here, we present a simulation study of the inhibition of the SARS-CoV-2 main protease (Mpro), a cysteine hydrolase essential for the life cycle of the virus. The free energy landscape for the mechanism of the inhibition process is explored by QM/MM umbrella sampling and free energy perturbation simulations at the M06-2X/MM level of theory for two proposed peptidyl covalent inhibitors that share the same recognition motif but feature distinct cysteine-targeting warheads. Regardless of the intrinsic reactivity of the modeled inhibitors, namely a Michael acceptor and a hydroxymethyl ketone activated carbonyl, our results confirm that the inhibitory process takes place by means of a two-step mechanism, in which the formation of an ion pair C145/H41 dyad precedes the protein-inhibitor covalent bond formation. The nature of this second step is strongly dependent on the functional groups in the warhead: while the nucleophilic attack of the C145 sulfur atom on the Cα of the double bond of the Michael acceptor takes place concertedly with the proton transfer from H41 to Cß, in the compound with an activated carbonyl, the sulfur attacks the carbonyl carbon concomitant with a proton transfer from H41 to the carbonyl oxygen via the hydroxyl group. An analysis of the free energy profiles, structures along the reaction path, and interactions between the inhibitors and the different pockets of the active site on the protein shows a measurable effect of the warhead on the kinetics and thermodynamics of the process. These results and QM/MM methods can be used as a guide to select warheads to design efficient irreversible and reversible inhibitors of SARS-CoV-2 Mpro.

14.
Chem Sci ; 12(41): 13686-13703, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34760153

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective 'peptibitors' inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.

15.
Org Biomol Chem ; 19(47): 10424-10431, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34825690

ABSTRACT

Here, we combine the use of host screening, protein crystallography and QM/MM molecular dynamics simulations to investigate how the protein structure affects iminium catalysis by biotinylated secondary amines in a model 1,4 conjugate addition reaction. Monomeric streptavidin (M-Sav) lacks a quaternary structure and the solvent-exposed reaction site resulted in poor product conversion in the model reaction with low enantio- and regioselectivities. These parameters were much improved when the tetrameric host T-Sav was used; indeed, residues at the symmetrical subunit interface were proven to be critical for catalysis through a mutagenesis study. The use of QM/MM simulations and the asymmetric dimeric variant D-Sav revealed that both Lys121 residues which are located in the hosting and neighboring subunits play a critical role in controlling the stereoselectivity and reactivity. Lastly, the D-Sav template, though providing a lower conversion than that of the symmetric tetrameric counterpart, is likely a better starting point for future protein engineering because each surrounding residue within the asymmetric scaffold can be refined for secondary amine catalysis.


Subject(s)
Streptavidin
16.
J Chem Inf Model ; 61(9): 4582-4593, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34472342

ABSTRACT

Alzheimer's disease represents one of the greatest medical concerns for today's population and health services. Its multifactorial inherent nature represents a challenge for its treatment and requires the development of a broad spectrum of drugs. Recently, the cysteine protease gingipain RgpB has been related to neurodegenerative diseases, including Alzheimer's disease, and its inhibition appears to be a promising neuroprotective strategy. Given these features, a computational study that integrates molecular dynamics (MD) simulations with classical and hybrid quantum mechanics/molecular mechanics (QM/MM) potentials was carried out to unravel the atomistic details of RgpB activity. First, a preliminary study based on principal component analysis (PCA), determined the protonation state of the Cys/His catalytic dyad, as well as the crucial role of a flexible loop that favors reactive interactions of the catalytic residues and the peptide in the precatalytic state in its closed conformation. Then, different mechanisms were explored by means of QM/MM MD simulations. The most favorable mechanism consists of two stages. First is an acylation stage that takes place in two steps where, initially, the sulfur atom of the C244 residue attacks the carbonylic carbon of the peptide and the proton of the C244 residue is transferred to the amino group of the peptide in a concerted manner. Subsequently, the peptide bond is broken, and a fragment of the peptide is released. After that, the deacylation stage takes place in a single step where a water molecule attacks the carbonylic carbon of the peptide and a proton of the water is transferred to the C244 residue. The free energy barrier of the rate limiting step is in very good agreement with available experimental data. The mechanism exhibits an unusual role of H211 residue compared with other cysteine proteases but a crucial role of the peptide in triggering the catalysis. Notably, the atomic and energetic particularities found represent a significant contribution to the comprehension of the reaction mechanism and a great opportunity for the design of efficient inhibitors of gingipain RgpB.


Subject(s)
Molecular Dynamics Simulation , Quantum Theory , Acylation , Catalysis , Gingipain Cysteine Endopeptidases , Proteolysis
17.
J Chem Inf Model ; 61(7): 3604-3614, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34251205

ABSTRACT

Environmentally friendly processes are nowadays a trending topic to get highly desired chemical compounds and, in this sense, the use of enzyme-catalyzed routes is becoming a promising alternative to traditional synthetic methods. In the present paper, a hybrid quantum mechanics/molecular mechanics (QM/MM) computational study on the epoxidation of alkenes catalyzed by the Ser105Ala variant of the promiscuous Candida antarctica lipase B (CALB) is presented in an attempt to search for alternative paths to get useful intermediates in industries. The catalyzed reaction, described at the atomistic level with a model of the full solvated in a box of water molecules, is compared with the alternative epoxidation of alkenes by peroxy acids in chloroform. Free-energy profiles obtained at the density functional theory (DFT)/MM level show how Ser105Ala CALB is capable of epoxide short alkenes in a two-step process with free-energy barriers, in agreement with available experimental data, that are significantly lower than those of the single-step reaction in solution. The possible (R)-enantioselectivity dictated by the binding step, explored by means of alchemical QM/MM free-energy perturbation (FEP) methods, and the preference for the (S)-enantiomer derived from the free-energy landscape of the chemical steps would cancel out, thus predicting the lack of enantioselectivity experimentally observed. In general, our results provide general information on the molecular mechanism employed by a highly promiscuous enzyme, with potential applications in biotechnology.


Subject(s)
Epoxy Compounds , Lipase , Basidiomycota , Fungal Proteins/metabolism , Lipase/metabolism , Molecular Dynamics Simulation , Stereoisomerism
18.
Proteins ; 89(10): 1340-1352, 2021 10.
Article in English | MEDLINE | ID: mdl-34075621

ABSTRACT

Recently, a bacterium strain of Ideonella sakaiensis was identified with the uncommon ability to degrade the poly(ethylene terephthalate) (PET). The PETase from I. sakaiensis strain 201-F6 (IsPETase) catalyzes the hydrolysis of PET converting it to mono(2-hydroxyethyl) terephthalic acid (MHET), bis(2-hydroxyethyl)-TPA (BHET), and terephthalic acid (TPA). Despite the potential of this enzyme for mitigation or elimination of environmental contaminants, one of the limitations of the use of IsPETase for PET degradation is the fact that it acts only at moderate temperature due to its low thermal stability. Besides, molecular details of the main interactions of PET in the active site of IsPETase remain unclear. Herein, molecular docking and molecular dynamics (MD) simulations were applied to analyze structural changes of IsPETase induced by PET binding. Results from the essential dynamics revealed that the ß1-ß2 connecting loop is very flexible. This loop is located far from the active site of IsPETase and we suggest that it can be considered for mutagenesis to increase the thermal stability of IsPETase. The free energy landscape (FEL) demonstrates that the main change in the transition between the unbound to the bound state is associated with the ß7-α5 connecting loop, where the catalytic residue Asp206 is located. Overall, the present study provides insights into the molecular binding mechanism of PET into the IsPETase structure and a computational strategy for mapping flexible regions of this enzyme, which can be useful for the engineering of more efficient enzymes for recycling plastic polymers using biological systems.


Subject(s)
Bacterial Proteins/metabolism , Burkholderiales/metabolism , Hydrolases/metabolism , Polyethylene Terephthalates/metabolism , Biocatalysis , Hydrolysis
19.
J Chem Inf Model ; 61(6): 3041-3051, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34085821

ABSTRACT

The environmental problems derived from the generalized plastic consumption and disposal could find a friendly solution in enzymatic biodegradation. Recently, two hydrolases from Ideonella sakaiensis 201-F6 and the metagenome-derived leaf-branch compost cutinase (LCC), more specially the improved ICCG variant, have revealed degradation activity toward poly ethylene terephthalate (PET). In the present study, the reaction mechanism of this polymer breakage is studied at an atomic level by multiscale QM/MM molecular dynamics simulations, using semiempirical and DFT Hamiltonians to describe the QM region. The obtained free energy surfaces confirmed a characteristic four-step path for both systems, with activation energies in agreement with the experimental observations. Structural analysis of the evolution of the active site along the reaction progress and the study of electrostatic effects generated by the proteins reveal the similarity in the behavior of the active site of these two enzymes. The origin of the apparent better performance of the LCC-ICCG protein over PETase must be due to its capabilities of working at higher temperature and its intrinsic relationship with the crystallinity grade of the polymer. Our results may be useful for the development of more efficient enzymes in the biodegradation of PET.


Subject(s)
Burkholderiales , Polyethylene Terephthalates , Bacterial Proteins , Biodegradation, Environmental , Hydrolases
20.
Biochemistry ; 60(16): 1243-1247, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33829766

ABSTRACT

Methylation of 2-deoxyuridine-5'-monophosphate (dUMP) at the C5 position by the obligate dimeric thymidylate synthase (TSase) in the sole de novo biosynthetic pathway to thymidine 5'-monophosphate (dTMP) proceeds by forming a covalent ternary complex with dUMP and cosubstrate 5,10-methylenetetrahydrofolate. The crystal structure of an analog of this intermediate gives important mechanistic insights but does not explain the half-of-the-sites activity of the enzyme. Recent experiments showed that the C5 proton and the catalytic Cys are eliminated in a concerted manner from the covalent ternary complex to produce a noncovalent bisubstrate intermediate. Here, we report the crystal structure of TSase with a close synthetic analog of this intermediate in which it has partially reacted with the enzyme but in only one protomer, consistent with the half-of-the-sites activity of this enzyme. Quantum mechanics/molecular mechanics simulations confirmed that the analog could undergo catalysis. The crystal structure shows a new water 2.9 Å from the critical C5 of the dUMP moiety, which in conjunction with other residues in the network, may be the elusive general base that abstracts the C5 proton of dUMP during the reaction.


Subject(s)
Thymidylate Synthase/chemistry , Catalytic Domain , Crystallography, X-Ray , Kinetics , Models, Molecular , Thymidylate Synthase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...