Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Int J Part Ther ; 13: 100623, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39139470

ABSTRACT

Purpose: Single vocal cord irradiation (SVCI) is a promising technique to maintain excellent oncologic control and potentially improve upon toxicities for treatment of early-stage glottic squamous cell carcinomas. We sought to investigate whether pencil beam scanning (PBS) proton therapy could improve upon the already favorable dose gradients demonstrated with volumetric modulated arc therapy (VMAT) SVCI. Patients and Methods: A 64-year-old gentleman was treated in our department with 6X-flattening filter-free VMAT SVCI to 58.08 Gy in 16 fractions for a T1a well-differentiated squamous cell carcinoma of the left true vocal cord and tolerated it well with good local control. Comparative PBS plans were created in Raystation for the Varian ProBeam with clinical target volume (CTVs) generated to mimic the prescription target volume extent of the VMAT planning target volumes when accounting for PBS plan robustness (±3 mm translational shifts, 3.5% density perturbation). A 3-field single-field optimization plan was selected as dosimetrically preferable. Dosimetric variables were compared. Results: Several organs at risk doses improved with PBS, including the maximum and mean dose to ipsilateral carotids, maximum and mean dose to contralateral carotid, maximum dose to the spinal cord, maximum and mean dose to inferior constrictor/cricopharyngeus, maximum and mean dose to the uninvolved vocal cord, and mean dose to the thyroid gland. There are tradeoffs in skin dose depending on location relative to the target-with the highest and lowest isodoses extending more into the skin with the VMAT plan but with the moderate isodose lines covering a wider area with the PBS plan, but we deemed it tolerable regardless. Conclusion: SVCI is a promising strategy for maintaining the oncologic effectiveness of whole-larynx photon radiation while potentially improving upon the historic toxicity profile. The favorable dose distribution with PBS with respect to organs at risk dosimetry for PBS may allow for further improvements upon VMAT SVCI strategies. Clinical implementation of PBS SVCI may be considered.

2.
Article in English | MEDLINE | ID: mdl-38825251

ABSTRACT

PURPOSE: The objective of this study was to characterize the conditional risk of developing grade 2+ urinary or gastrointestinal (GI) toxicity for patients treated with external beam radiation therapy in Radiation Therapy Oncology Group 0126. A secondary objective was to analyze baseline patient and treatment characteristics and determine their relevance in predicting toxicity both at the time of trial enrollment and at later points of follow-up. METHODS AND MATERIALS: One thousand five hundred thirty-two patients with localized prostate cancer were enrolled between March 2002 and August 2008, of whom 1499 were eligible and included in data analysis with a median follow-up of 8.4 years (range, 0.02-13 years). Patients were treated with either 3-dimensional conformal radiation therapy or intensity-modulated radiation therapy according to institutional practice without the addition of androgen deprivation and randomized to receive either standard-dose radiation therapy of 70.2 Gy or dose-escalated radiation therapy of 79.2 Gy of radiation therapy to the prostate only with standard fractionation. Univariate and multivariate analyses were performed to determine whether initial factors were predictive of late toxicity at the time of treatment and at later time points. RESULTS: As patients proceed further from completion of radiation therapy without the development of toxicity, the subsequent risk of both grade 2+ genitourinary (GU) and GI toxicity decreases with time. At the time of enrollment, the risk of developing grade 2+ toxicity over the next 5 years was 9.57% and 17.89%, respectively. After 5 years of toxicity-free survival, the risk of developing grade 2+ GU or GI toxicity in the subsequent 5 years was 3.02% and 1.54%, respectively. Baseline treatment and patient-related factors predicted late toxicity both at trial enrollment and after 2 years of toxicity-free survivorship. Baseline urinary dysfunction and dose-escalated radiation therapy were associated with increased late GU toxicity. Acute GI toxicity and dose-escalated radiation therapy were associated with increased risk of late GI toxicity. Treatment with intensity-modulated radiation therapy was associated with reduced risk of either toxicity. CONCLUSIONS: The conditional risk of grade 2+ toxicities decreases as patients proceed further from treatment, with most toxicities occurring in the first few years after treatment completion. Baseline patient and treatment characteristics remain relevant at both enrollment and later time points.

3.
Article in English | MEDLINE | ID: mdl-38936634

ABSTRACT

PURPOSE: Pencil-beam scanning proton therapy has been considered a potential modality for the 3D form of spatially fractionated radiation therapy called lattice therapy. However, few practical solutions have been introduced in the clinic. Existing limitations include degradation in plan quality and robustness when using single-field versus multifield lattice plans, respectively. We propose a practical and robust proton lattice (RPL) planning method using multifield and evaluate its dosimetric characteristics compared to clinically acceptable photon lattice plans. METHODS AND MATERIALS: Seven cases previously treated with photon lattice therapy were used to evaluate a novel RPL planning technique using 2-orthogonal beams: a primary beam (PB) and a robust complementary beam (RCB) that deliver 67% and 33%, respectively, of the prescribed dose to vertices inside the gross target volume (GTV). Only RCB is robustly optimized for setup and range uncertainties. The number and volume of vertices, peak-to-valley dose ratios (PVDRs), and volume of low dose to GTV of proton and photon plans were compared. The RPL technique was then used in the treatment of 2 patients and their dosimetric parameters were reported. RESULTS: The RPL strategy was able to achieve the clinical planning goals. Compared to previously treated photon plans, the average number of vertices increased by 30%, the average vertex volume by 49% (18.2 ± 25.9 cc vs 12.2 ± 14.5 cc, P = .21), and higher PVDR (10.5 ± 4.8 vs 2.5 ± 0.9, P < .005) was achieved. In addition, RPL plans show more conformal dose with less low dose to GTV (V30%, 60.9% ± 7.2% vs 81.6% ± 13.9% and V10%, 88.3% ± 4.5% vs 98.6% ± 3.6% [P < .01]). The RPL plan for 2 treated patients showed PVDRs of 4.61 and 14.85 with vertices-to-GTV ratios of 1.52% and 1.30%, respectively. CONCLUSIONS: A novel RPL planning strategy using a pair of orthogonal beams was developed and successfully translated to the clinic. The proposed method can generate better quality plans, a higher number of vertices, and higher PVDRs than currently used photon lattice plans.

4.
Eur Urol Oncol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38862340

ABSTRACT

BACKGROUND AND OBJECTIVE: Oligometastatic castration-sensitive prostate cancer (omCSPC) represents an early state in the progression of metastatic disease for which patients experience better outcomes in comparison to those with higher disease burden. Despite the generally more indolent nature, there is still much heterogeneity, with some patients experiencing a more aggressive clinical course unexplained by clinical features alone. Our aim was to investigate correlation of tumor genomics with the mode of progression (MOP) and pattern of failure (POF) following first treatment (metastasis-directed and/or systemic therapy) for omCSPC. METHODS: We performed an international multi-institutional retrospective study of men treated for metachronous omCSPC who underwent tumor next-generation sequencing with at least 1 yr of follow-up after their first treatment. Descriptive MOP and POF results are reported with respect to the presence of genomic alterations in pathways of interest. MOP was defined as class I, long-term control (LTC; no radiographic progression at last follow-up), class II, oligoprogression (1-3 lesions), or class III, polyprogression (≥4 lesions). POF included the location of lesions at first failure. Genomic pathways of interest included TP53, ATM, RB1, BRCA1/2, SPOP, and WNT (APC, CTNNB1, RNF43). Genomic associations with MOP/POF were compared using χ2 tests. Exploratory analyses revealed that the COSMIC mutational signature and differential gene expression were also correlated with MOP/POF. Overall survival (OS) was calculated via the Kaplan-Meier method from the time of first failure. KEY FINDINGS AND CLINICAL IMPLICATIONS: We included 267 patients in our analysis; the majority had either one (47%) or two (30%) metastatic lesions at oligometastasis. The 3-yr OS rate was significantly associated with MOP (71% for polyprogression vs 91% for oligoprogression; p = 0.005). TP53 mutation was associated with a significantly lower LTC rate (27.6% vs 42.3%; p = 0.04) and RB1 mutation was associated with a high rate of polyprogression (50% vs 19.9%; p = 0.022). Regarding POF, bone failure was significantly more common with tumors harboring TP53 mutations (44.8% vs25.9%; p = 0.005) and less common with SPOP mutations (7.1% vs 31.4%; p = 0.007). Visceral failure was more common with tumors harboring either WNT pathway mutations (17.2% vs 6.8%, p = 0.05) or SPOP mutations (17.9% vs 6.3%; p = 0.04). Finally, visceral and bone failures were associated with distinct gene-expression profiles. CONCLUSIONS AND CLINICAL IMPLICATIONS: Tumor genomics provides novel insight into MOP and POF following treatment for metachronous omCSPC. Patients with TP53 and RB1 mutations have a higher likelihood of progression, and TP53, SPOP, and WNT pathway mutations may have a role in metastatic organotropism. PATIENT SUMMARY: We evaluated cancer progression after a first treatment for metastatic prostate cancer with up to five metastases. We found that mutations in certain genes were associated with the location and extent of further metastasis in these patients.

5.
Oral Oncol ; 154: 106875, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824813

ABSTRACT

INTRODUCTION: Re-irradiation (re-RT) for recurrent head and neck cancer (rHNC) is challenging. We describe clinical outcomes and toxicity of proton therapy (PT) for recurrent HNC, and report genomic alterations associated with patterns of failure. MATERIALS & METHODS: We performed a retrospective analysis of rHNC patients treated with PT. Outcomes were estimated using the Kaplan-Meier method. Univariate (UVA) and multivariate analyses (MVA) were performed to assess multiple patient factors. Next-generation sequencing and genomic analyses were performed on available samples. RESULTS: Eighty-nine patients treated with PBS-PT for rHNC with a median follow-up of 12 mo (0-71 mo) were included. The 1- and 2-y local control (LC) rates were 80.8 % (95 % CI: 70.8-90.8) and 66.2 % (95 % CI: 50.7-81.7), and 1- and 2-y distant metastasis-free survival (DMFS) were 41.0 % (95 % CI: 30.0-52.0) and 26.3 % (95 % CI: 15.7-36.9). The median overall survival (OS) was 13 mo (95 % CI: 9.3-16.7). On UVA and MVA, smaller gross tumor volume (GTV) was associated with improved OS (HR 1.002, P = 0.004), DMFS (HR 1.002, P = 0.004), and PFS (HR 1.002, P = 0.014). There were 35 late Gr3 + toxicity events (30.3 %). Patients with higher candidate gene-specific mutation burden (genes with [OR] > 2, P < 0.05) had inferior PFS. TP53, NOTCH4, and ARID1B mutations were associated with inferior DMFS (OR > 2, P < 0.05). CONCLUSIONS: PBS-PT is effective at achieving LC for rHNC with favorable toxicity. Distant metastases are common, and associated with TP53, NOTCH4, and ARID1B mutations. Inclusion of genomic alterations in the clinical decision process may be warranted.


Subject(s)
Head and Neck Neoplasms , Neoplasm Recurrence, Local , Proton Therapy , Humans , Female , Male , Middle Aged , Proton Therapy/methods , Proton Therapy/adverse effects , Aged , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/genetics , Adult , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/radiotherapy , Retrospective Studies , Aged, 80 and over , Re-Irradiation/methods , Treatment Outcome , Genomics/methods , Mutation
6.
Int J Part Ther ; 11: 100019, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38757077

ABSTRACT

Purpose: Radiotherapy delivery in the definitive management of lower gastrointestinal (LGI) tract malignancies is associated with substantial risk of acute and late gastrointestinal (GI), genitourinary, dermatologic, and hematologic toxicities. Advanced radiation therapy techniques such as proton beam therapy (PBT) offer optimal dosimetric sparing of critical organs at risk, achieving a more favorable therapeutic ratio compared with photon therapy. Materials and Methods: The international Particle Therapy Cooperative Group GI Subcommittee conducted a systematic literature review, from which consensus recommendations were developed on the application of PBT for LGI malignancies. Results: Eleven recommendations on clinical indications for which PBT should be considered are presented with supporting literature, and each recommendation was assessed for level of evidence and strength of recommendation. Detailed technical guidelines pertaining to simulation, treatment planning and delivery, and image guidance are also provided. Conclusion: PBT may be of significant value in select patients with LGI malignancies. Additional clinical data are needed to further elucidate the potential benefits of PBT for patients with anal cancer and rectal cancer.

7.
Front Oncol ; 14: 1380599, 2024.
Article in English | MEDLINE | ID: mdl-38715772

ABSTRACT

Introduction: This study aimed to identify CT-based imaging biomarkers for locoregional recurrence (LR) in Oral Cavity Squamous Cell Carcinoma (OSCC) patients. Methods: Computed tomography scans were collected from 78 patients with OSCC who underwent surgical treatment at a single medical center. We extracted 1,092 radiomic features from gross tumor volume in each patient's pre-treatment CT. Clinical characteristics were also obtained, including race, sex, age, tobacco and alcohol use, tumor staging, and treatment modality. A feature selection algorithm was used to eliminate the most redundant features, followed by a selection of the best subset of the Logistic regression model (LRM). The best LRM model was determined based on the best prediction accuracy in terms of the area under Receiver operating characteristic curve. Finally, significant radiomic features in the final LRM model were identified as imaging biomarkers. Results and discussion: Two radiomics biomarkers, Large Dependence Emphasis (LDE) of the Gray Level Dependence Matrix (GLDM) and Long Run Emphasis (LRE) of the Gray Level Run Length Matrix (GLRLM) of the 3D Laplacian of Gaussian (LoG σ=3), have demonstrated the capability to preoperatively distinguish patients with and without LR, exhibiting exceptional testing specificity (1.00) and sensitivity (0.82). The group with LRE > 2.99 showed a 3-year recurrence-free survival rate of 0.81, in contrast to 0.49 for the group with LRE ≤ 2.99. Similarly, the group with LDE > 120 showed a rate of 0.82, compared to 0.49 for the group with LDE ≤ 120. These biomarkers broaden our understanding of using radiomics to predict OSCC progression, enabling personalized treatment plans to enhance patient survival.

8.
Cell Death Discov ; 10(1): 106, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429272

ABSTRACT

Pancreatic cancer has a five-year survival rate of only 10%, mostly due to late diagnosis and limited treatment options. In patients with unresectable disease, either FOLFIRINOX, a combination of 5-fluorouracil (5-FU), oxaliplatin and irinotecan, or gemcitabine plus nab-paclitaxel combined with radiation are frontline standard regimens. However, chemo-radiation therapy has shown limited success because patients develop resistance to chemotherapy and/or radiation. In this study, we evaluated the role of pancreatic cancer stem cells (CSC) using OCT4 and SOX2, CSC markers in mouse pancreatic tumor organoids. We treated pancreatic tumor organoids with 4 or 8 Gy of radiation, 10 µM of 5-FU (5-Fluorouracil), and 100 µM 3-Bromopyruvate (3BP), a promising anti-cancer drug, as a single treatment modalities, and in combination with RT. Our results showed significant upregulation of, OCT4, and SOX2 expression in pancreatic tumor organoids treated with 4 and 8 Gy of radiation, and downregulation following 5-FU treatment. The expression of CSC markers with increasing treatment dose exhibited elevated upregulation levels to radiation and downregulation to 5-FU chemotherapy drug. Conversely, when tumor organoids were treated with a combination of 5-FU and radiation, there was a significant inhibition in SOX2 and OCT4 expression, indicating CSC self-renewal inhibition. Noticeably, we also observed that human pancreatic tumor tissues exhibited heterogeneous and aberrant OCT4 and SOX2 expression as compared to normal pancreas, indicating their potential role in pancreatic cancer growth and therapy resistance. In addition, the combination of 5-FU and radiation treatment exhibited significant inhibition of the ß-catenin pathway in pancreatic tumor organoids, resulting in sensitization to treatment and organoid death. In conclusion, our study emphasizes the crucial role of CSCs in therapeutic resistance in PC treatment. We recommend using tumor organoids as a model system to explore the impact of CSCs in PC and identify new therapeutic targets.

9.
Res Sq ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38343846

ABSTRACT

This study aimed to identify CT-based imaging biomarkers for locoregional recurrence (LR) in Oral Cavity Squamous Cell Carcinoma (OSCC) patients. Our study involved a retrospective review of 78 patients with OSCC who underwent surgical treatment at a single medical center. An approach involving feature selection and statistical model diagnostics was utilized to identify biomarkers. Two radiomics biomarkers, Large Dependence Emphasis (LDE) of the Gray Level Dependence Matrix (GLDM) and Long Run Emphasis (LRE) of the Gray Level Run Length Matrix (GLRLM) of the 3D Laplacian of Gaussian (LoG σ = 3), have demonstrated the capability to preoperatively distinguish patients with and without LR, exhibiting exceptional testing specificity (1.00) and sensitivity (0.82). The group with LRE > 2.99 showed a 3-year recurrence-free survival rate of 0.81, in contrast to 0.49 for the group with LRE ≤ 2.99. Similarly, the group with LDE > 120 showed a rate of 0.82, compared to 0.49 for the group with LDE ≤ 120. These biomarkers broaden our understanding of using radiomics to predict OSCC progression, enabling personalized treatment plans to enhance patient survival.

10.
Radiother Oncol ; 193: 110112, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309587

ABSTRACT

OBJECTIVES: We sought to describe outcomes for locally advanced cutaneous squamous cell carcinoma (SCC) involving the parotid treated with volumetric modulated arc therapy (VMAT) versus pencil beam scanning proton beam therapy (PBT). MATERIALS AND METHODS: Patients were gathered from 2016 to 2022 from 5 sites of a large academic RT department; included patients were treated with RT and had parotid involvement by: direct extension of a cutaneous primary, parotid regional spread from a previously or contemporaneously resected but geographically separate cutaneous primary, or else primary parotid SCC (with a cutaneous primary ostensibly occult). Acute toxicities were provider-reported (CTCAE v5.0) and graded at each on treatment visit. Statistical analyses were conducted. RESULTS: Median follow-up was 12.9 months (1.3 - 72.8); 67 patients were included. Positive margins/extranodal extension were present in 34 cases; gross disease in 17. RT types: 39 (58.2 %) VMAT and 28 (41.8 %) PBT. Concurrent systemic therapy was delivered in 10 (14.9 %) patients. There were 17 treatment failures (25.4 %), median time of 168 days. Pathologically positive neck nodes were associated with locoregional recurrence (p = 0.015). Oral cavity, pharyngeal constrictor, and contralateral parotid doses were all significantly lower for PBT. Median weight change was -3.8 kg (-14.1 - 5.1) for VMAT and -3 kg (-16.8 - 3) for PBT (p = 0.013). Lower rates of ≥ grade 1 xerostomia (p = 0.002) and ≥ grade 1 dysguesia (p < 0.001) were demonstrated with PBT. CONCLUSIONS: Cutaneous SCC involving the parotid can be an aggressive clinical entity despite modern multimodal therapy. PBT offers significantly lower dose to organs at risk compared to VMAT, which seemingly yields diminished acute toxicities.


Subject(s)
Carcinoma, Squamous Cell , Parotid Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Skin Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Parotid Gland/pathology , Radiotherapy, Intensity-Modulated/adverse effects , Proton Therapy/adverse effects , Skin Neoplasms/radiotherapy , Skin Neoplasms/pathology , Neoplasm Recurrence, Local , Parotid Neoplasms/radiotherapy , Parotid Neoplasms/pathology
11.
J Cancer Allied Spec ; 10(1): 579, 2024.
Article in English | MEDLINE | ID: mdl-38259673

ABSTRACT

Introduction: Due to the radiation-sparing effects on salivary gland acini, changes in the composition of the oral microbiome may be a driver for improved outcomes in patients receiving proton radiation, with potentially worse outcomes in patients exposed to photon radiation therapy. To date, a head-to-head comparison of oral microbiome changes at a metagenomic level with longitudinal sampling has yet to be performed in these patient cohorts. Methods and Materials: To comparatively analyze oral microbiome shifts during head and neck radiation therapy, a prospective pilot cohort study was performed at the Maryland Proton Treatment Center and the University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center. A longitudinal metagenomic comparative analysis of oral microbiome shifts was performed at three time points (pre-radiation, during radiation, and immediately post-radiation). Head and neck cancer patients receiving proton radiation (n = 4) were compared to photon radiation (n = 4). Additional control groups included healthy age- and sex-matched controls (n = 5), head and neck cancer patients who never received radiation therapy (n = 8), and patients with oral inflammatory disease (n = 3). Results: Photon therapy patients presented with lower microbial alpha diversity at all timepoints, and there was a trend towards reduced species richness as compared with proton therapy. Healthy controls and proton patients exhibited overall higher and similar diversity. A more dysbiotic state was observed in patients receiving photon therapy as compared to proton therapy, in which oral microbial homeostasis was maintained. Mucositis was observed in 3/4 photon patients and was not observed in any proton patients during radiation therapy. The bacterial de novo pyrimidine biosynthesis pathway and the nitrate reduction V pathway were comparatively higher following photon exposure. These functional changes in bacterial metabolism may suggest that photon exposure produces a more permissive environment for the proliferation of pathogenic bacteria. Conclusion: Oral microbiome dysbiosis in patients receiving photon radiation may be associated with increased mucositis occurrence. Proton radiation therapy for head and neck cancer demonstrates a safer side effect profile in terms of oral complications, oral microbiome dysbiosis, and functional metabolic status.

12.
Adv Radiat Oncol ; 9(3): 101392, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38292885

ABSTRACT

Purpose: Breath-hold (BH) technique can mitigate target motion, minimize target margins, reduce normal tissue doses, and lower the effect of interplay effects with intensity-modulated proton therapy (IMPT). This study presents dosimetric comparisons between BH and nonbreath-hold (non-BH) IMPT plans and investigates the reproducibility of BH plans using frequent quality assurance (QA) computed tomography scans (CT). Methods and Materials: Data from 77 consecutive patients with liver (n = 32), mediastinal/lung (n = 21), nonliver upper abdomen (n = 20), and malignancies in the gastroesophageal junction (n = 4), that were treated with a BH spirometry system (SDX) were evaluated. All patients underwent both BH CT and 4-dimensional CT simulations. Clinically acceptable BH and non-BH plans were generated on each scan, and dose-volume histograms of the 2 plans were compared. Reproducibility of the BH plans for 30 consecutive patients was assessed using 1 to 3 QA CTs per patient and variations in dose-volume histograms for deformed target and organs at risk (OARs) volumes were compared with the initial CT plan. Results: Use of BH scans reduced initial and boost target volumes to 72% ± 20% and 70% ± 17% of non-BH volumes, respectively. Additionally, mean dose to liver, stomach, kidney, esophagus, heart, and lung V20 were each reduced to 71% to 79% with the BH technique. Similarly, small and large bowels, heart, and spinal cord maximum doses were each lowered to 68% to 84%. Analysis of 62 QA CT scans demonstrated that mean target and OAR doses using BH scans were reproducible to within 5% of their nominal plan values. Conclusions: The BH technique reduces the irradiated volume, leading to clinically significant reductions in OAR doses. By mitigating tumor motion, the BH technique leads to reproducible target coverage and OAR doses. Its use can reduce motion-related uncertainties that are normally associated with the treatment of thoracic and abdominal tumors and, therefore, optimize IMPT delivery.

13.
Radiother Oncol ; 190: 109977, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37922991

ABSTRACT

INTRODUCTION: Unilateral radiation therapy is appropriate for select patients with oropharyngeal squamous cell carcinoma (OPSCC). The use of proton beam therapy (PBT) in the unilateral setting decreases the dose to the contralateral neck and organs at risk. This study aims to evaluate contralateral recurrences in patients who received ipsilateral PBT. METHODS: We evaluated the Proton Collaborative Group database for patients treated with PBT for head and neck squamous cell carcinoma between the years 2015-2020 at 12 institutions. Dosimetric analysis was performed in five cases. RESULTS: Our analysis included 41 patients that received ipsilateral PBT with a mean follow-up of 14.7 months. 37% patients (n = 15) were treated for recurrent disease, and 63% (n = 26) were treated for de novo disease. Oropharyngeal sites included tonsillar fossa (n = 30) and base of tongue (n = 11). The median dose and BED delivered were 69.96 CGE and 84 Gy, respectively. Eight (20%) patients experienced at least one grade 3 dysphagia (n = 4) or esophagitis (n = 4) toxicity. No grade ≥ 4 toxicities were reported. There was one (2.4%) failure in the contralateral neck. The 1-year locoregional control was 88.9% and the freedom from distant metastasis was 95.5% (n = 2). The dosimetric analysis demonstrated similar ipsilateral level II cervical nodal region doses, whereas contralateral doses were higher with photon plans, mean: 15.5 Gy and 0.7CGE, D5%: 25.1 Gy and 6.6CGE. CONCLUSIONS: Our series is the first to report outcomes for patients with OPSCC receiving unilateral PBT. The contralateral neck failure rate was excellent and comparable to failure rates with photon irradiation.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Proton Therapy , Humans , Squamous Cell Carcinoma of Head and Neck/etiology , Protons , Prospective Studies , Carcinoma, Squamous Cell/pathology , Proton Therapy/adverse effects , Head and Neck Neoplasms/etiology , Radiotherapy Dosage
14.
J Appl Clin Med Phys ; 25(2): e14186, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37974385

ABSTRACT

PURPOSE: Noncoplanar plans (NCPs) are commonly used for proton treatment of bilateral head and neck (HN) malignancies. NCP requires additional verification setup imaging between beams to correct residual errors of robotic couch motion, which increases imaging dose and total treatment time. This study compared the quality and robustness of NCPs with those of coplanar plans (CPs). METHODS AND MATERIALS: Under an IRB-approved study, CPs were created retrospectively for 10 bilateral HN patients previously treated with NCPs maintaining identical beam geometry of the original plan but excluding couch rotations. Plan robustness to the inter-fractional variation (IV) of both plans was evaluated through the Dose Volume Histograms (DVH) of weekly quality assurance CT (QACT) sets (39 total). In addition, delivery efficiency for both plans was compared using total treatment time (TTT) and beam-on time (BOT). RESULTS: No significant differences in plan quality were observed in terms of clinical target volume (CTV) coverage (D95) or organ-at-risk (OAR) doses (p > 0.4 for all CTVs and OARs). No significant advantage of NCPs in the robustness to IV was found over CP, either. Changes in D95 of QA plans showed a linear correlation (slope = 1.006, R2  > 0.99) between NCP and CP for three CTV data points (CTV1, CTV2, and CTV3) in each QA plan (117 data points for 39 QA plans). NCPs showed significantly higher beam delivery time than CPs for TTT (539 ± 50 vs. 897 ± 142 s; p < 0.001); however, no significant differences were observed for BOT. CONCLUSION: NCPs are not more robust to IV than CPs when treating bilateral HN tumors with pencil-beam scanning proton beams. CPs showed plan quality and robustness similar to NCPs while reduced treatment time (∼6 min). This suggests that CPs may be a more efficient planning technique for bilateral HN cancer proton therapy.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Protons , Proton Therapy/methods , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Organs at Risk
15.
Prostate ; 84(1): 87-99, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37812042

ABSTRACT

PURPOSE: Despite well-informed work in several malignancies, the phenotypic effects of TP53 mutations in metastatic castration-sensitive prostate cancer (mCSPC) progression and metastasis are not clear. We characterized the structure-function and clinical impact of TP53 mutations in mCSPC. PATIENTS AND METHODS: We performed an international retrospective review of men with mCSPC who underwent next-generation sequencing and were stratified according to TP53 mutational status and metastatic burden. Clinical outcomes included radiographic progression-free survival (rPFS) and overall survival (OS) evaluated with Kaplan-Meier and multivariable Cox regression. We also utilized isogenic cancer cell lines to assess the effect of TP53 mutations and APR-246 treatment on migration, invasion, colony formation in vitro, and tumor growth in vivo. Preclinical experimental observations were compared using t-tests and ANOVA. RESULTS: Dominant-negative (DN) TP53 mutations were enriched in patients with synchronous (vs. metachronous) (20.7% vs. 6.3%, p < 0.01) and polymetastatic (vs. oligometastatic) (14.4% vs. 7.9%, p < 0.01) disease. On multivariable analysis, DN mutations were associated with worse rPFS (hazards ratio [HR] = 1.97, 95% confidence interval [CI]: 1.31-2.98) and overall survival [OS] (HR = 2.05, 95% CI: 1.14-3.68) compared to TP53 wild type (WT). In vitro, 22Rv1 TP53 R175H cells possessed stronger migration, invasion, colony formation ability, and cellular movement pathway enrichment in RNA sequencing analysis compared to 22Rv1 TP53 WT cells. Treatment with APR-246 reversed the effects of TP53 mutations in vitro and inhibited 22Rv1 TP53 R175H tumor growth in vivo in a dosage-dependent manner. CONCLUSIONS: DN TP53 mutations correlated with worse prognosis in prostate cancer patients and higher metastatic potential, which could be counteracted by APR-246 treatment suggesting a potential future therapeutic avenue.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prognosis , Progression-Free Survival , Mutation , Structure-Activity Relationship , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Tumor Suppressor Protein p53/genetics
16.
Sci Rep ; 13(1): 21774, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066047

ABSTRACT

This study addresses the limited non-invasive tools for Oral Cavity Squamous Cell Carcinoma (OSCC) survival prediction by identifying Computed Tomography (CT)-based biomarkers to improve prognosis prediction. A retrospective analysis was conducted on data from 149 OSCC patients, including CT radiomics and clinical information. An ensemble approach involving correlation analysis, score screening, and the Sparse-L1 algorithm was used to select functional features, which were then used to build Cox Proportional Hazards models (CPH). Our CPH achieved a 0.70 concordance index in testing. The model identified two CT-based radiomics features, Gradient-Neighboring-Gray-Tone-Difference-Matrix-Strength (GNS) and normalized-Wavelet-LLL-Gray-Level-Dependence-Matrix-Large-Dependence-High-Gray-Level-Emphasis (HLE), as well as stage and alcohol usage, as survival biomarkers. The GNS group with values above 14 showed a hazard ratio of 0.12 and a 3-year survival rate of about 90%. Conversely, the GNS group with values less than or equal to 14 had a 49% survival rate. For normalized HLE, the high-end group (HLE > - 0.415) had a hazard ratio of 2.41, resulting in a 3-year survival rate of 70%, while the low-end group (HLE ≤ - 0.415) had a 36% survival rate. These findings contribute to our knowledge of how radiomics can be used to predict the outcome so that treatment plans can be tailored for patients people with OSCC to improve their survival.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Retrospective Studies , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/pathology , Tomography, X-Ray Computed/methods , Biomarkers , Prognosis , Mouth Neoplasms/diagnostic imaging
17.
J Radiosurg SBRT ; 9(1): 43-52, 2023.
Article in English | MEDLINE | ID: mdl-38029012

ABSTRACT

Background: Proton beam therapy (PBT) is a non-surgical treatment that spares adjacent tissues compared to photon radiation and useful for Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). We present a single center experience in HCC and iCCA treated with Pencil Beam Scanning (PBS) PBT. Methods: Forty-four consecutive patients (22 patients in each group) receiving PBT were included and reviewed. PBT was delivered with hypofractionated or stereotactic body radiation therapy (SBRT) using PBS. Tumor size was approximated by clinical target volume (CTV). Outcomes were evaluated with Kaplan-Meier and liver toxicity was determined by MELD-Na and albumin-bilirubin (ALBI) grade. Results: Median follow up was 38.7 months, fourteen (35%) had multifocal disease and median CTV was 232.5cc. Four (9%) and 40 (91%) patients received SBRT and hypofractionated radiation, respectively. Two year overall survival was statistically higher for HCC (entire group: 68.9% months [95% CI: 61.3 - 76.3%]; iCCA: 49.8% [95% CI: 38.5% - 61.1%]; HCC: 89.4% [95% CI: 82.3 - 96.5%]; P <0.005). There was no statistical difference in progression-free survival or freedom from local failure. Biologically Equivalent Dose (BED) was greater than or equal to 80.5Gy in 37 (84%) patients. All iCCA patients had stable or improved ALBI grade following treatment. ALBI grade was stable in 83% of HCC patients and average MELD-Na score remained stable. Tumor size, pretreatment liver function, and total radiation dose were not associated with liver toxicity. Conclusions: PBT for unresectable HCC and iCCA is safe and effective, even for large and multifocal tumors. Liver function was preserved even in those with baseline cirrhosis in this advanced population with large tumors.

18.
J Clin Imaging Sci ; 13: 31, 2023.
Article in English | MEDLINE | ID: mdl-37810180

ABSTRACT

Objectives: Given emerging data suggesting that uncertainty in the relative biologic effectiveness at the distal end of the Bragg peak results in increased mucosal injury in patients with oropharynx cancer receiving adjuvant proton therapy, we evaluated the results of post-treatment positron emission tomography-computed tomography (PET/CT) in patients with p16-positive oropharynx cancer (p16+OPC) treated with definitive intensity-modulated proton therapy (IMPT). Material and Methods: A retrospective cohort study of patients with p16+OPC treated with definitive IMPT between 2016 and 2022 was performed at a single institution. Patients with PET/CT scans within 6 months following completion of IMPT were included in the study. Positive post-treatment scans were defined by a maximum standard uptake values (SUVmax) >4.0 or a <65% reduction in SUVmax in either the primary tumor or lymph node. The Fisher's exact test was used to evaluate factors associated with positive post-treatment PET/ CT values. Results: Sixty-two patients were included for analysis. Median follow-up was 21 months (range: 3-71 months) with a median time to post-treatment PET/CT of 3 months (range: 2-6 months). Median post-treatment SUVmax of the primary disease and nodal disease was 0 (mean: 0.8, range: 0-7.7) and 0 (mean: 0.7, range: 0-9.5), respectively. Median post-treatment percent reduction in SUVmax for the primary site and lymph node was 100% (mean: 94%, range: 31.3-100%) and 100% (mean: 89%, range: 23-100%), respectively. Eleven patients had a positive post-treatment PET/CT with one biopsy-proven recurrence. Negative and positive predictive values (NPV and PPV) were 98% and 9.1%, respectively. There were no factors associated with positive post-treatment PET/CT. Conclusion: Similar to patients treated with photon-based radiation therapy, post-treatment PET/CT has a high NPV for patients with p16+OPC treated with definitive proton therapy and should be used to guide patient management. Additional patients and more events are needed to confirm the PPV of a post-treatment PET/CT in this favorable patient cohort.

19.
Res Sq ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37674725

ABSTRACT

This study addresses the limited non-invasive tools for Oral Cavity Squamous Cell Carcinoma OSCC survival prediction by identifying Computed Tomography (CT)-based biomarkers for improved prognosis. A retrospective analysis was conducted on data from 149 OSCC patients, including radiomics and clinical. An ensemble approach involving correlation analysis, score screening, and the Sparse-L1 algorithm was used to select functional features, which were then used to build Cox Proportional Hazards models (CPH). Our CPH achieved a 0.70 concordance index in testing. The model identified two CT-based radiomics features, Gradient-Neighboring-Gray-Tone-Difference-Matrix-Strength (GNS) and normalized-Wavelet-LLL-Gray-Level-Dependence-Matrix-Large-Dependence-High-Gray-Level-Emphasis (HLE), as well as smoking and alcohol usage, as survival biomarkers. The GNS group with values above 14 showed a hazard ratio of 0.12 and a 3-year survival rate of about 90%. Conversely, the GNS group with values less than or equal to 14 had a 49% survival rate. For normalized HLE, the high-end group (HLE > -0.415) had a hazard ratio of 2.41, resulting in a 3-year survival rate of 70%, while the low-end group (HLE <= -0.415) had a 36% survival rate. These findings contribute to our knowledge of how radiomics can be used to anticipate the outcome and tailor treatment plans from people with OSCC.

20.
JAMA Netw Open ; 6(9): e2335069, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37751207

ABSTRACT

Importance: As patients achieve years of survival after treatment for prostate cancer, the risk of biochemical failure (BF) or prostate cancer-specific death (PCSD) may evolve over time, with clinical relevance to both patients and clinicians. Objective: To determine conditional BF-free survival, PSCD, and overall survival estimates for patients with low- or intermediate-risk prostate cancer enrolled in the Radiation Therapy Oncology Group (RTOG) 0126 and RTOG 0415 clinical trials. A secondary objective was to determine whether prognostic factors at diagnosis remain relevant at later points in follow-up. Design, Setting, and Participants: A pooled secondary analysis of patients treated with external-beam radiotherapy alone and enrolled in the prospective randomized clinical trials RTOG 0126 and RTOG 0415 was performed. Patients included for analysis were enrolled between March 2002 and December 2009 with a median follow-up of 6.9 years. Overall survival was calculated using the Kaplan-Meier method at various survivorship time points. Cumulative incidence was used to calculate BF rates using the Phoenix definition, as well as PCSD. Risk factors such as Gleason score, tumor (T) stage, prostate-specific antigen level, and the equivalent dose in 2 Gy fractions of prescribed dose were analyzed at different time points using multivariable Cox proportional hazards modeling. Data were analyzed from November 2021 to February 2023. Main Outcomes and Measures: Conditional risks of BF and PCSD after completion of external-beam radiotherapy. Results: A total of 2591 patients (median [IQR] age, 69 [63-73] years) were included in the study with a mean (range) PSA level of 7.1 (4.7-8.9) ng/mL, 1334 patients (51.5%) with a Gleason score 6 disease, and 1706 patients (65.8%) with T1 disease. Rates of BF from time of treatment were 1.63% (95% CI, 1.20%-2.18%) at 1 year, 7.04% (95% CI, 6.09%-8.08%) at 3 years, 12.54% (95% CI, 11.28%-13.88%) at 5 years, and 22.32% (95% CI, 20.46%-24.24%) at 8 years. For patients surviving 1, 3, and 5 years without BF, the rates of BF in the next 5 years were 14.20% (95% CI, 12.80%-15.66%), 17.19% (95% CI, 15.34%-19.14%), and 18.85% (95% CI, 16.21%-21.64%), respectively. At the initial time point, the rate of PCSD in the next 5 years was 0.66% (95% CI, 0.39%-1.04%). For patients who achieved 1, 3, 5, and 8 years of survivorship, the rates of PCSD in the next 5 years were 1.16% (95% CI, 0.77-1.67) at 1 year, 2.42% (95% CI, 1.74%-3.27%) at 3 years, 2.88% (95% CI, 2.01%-3.99%) at 5 years, and 3.49% (95% CI, 0.98%-8.73%) at 8 years. Conclusions and Relevance: In this secondary analysis of 2 randomized clinical trials of patients undergoing external beam radiotherapy for prostate cancer, the conditional risks of BF and death from prostate cancer increased with time for patients with low- and intermediate-risk prostate cancer treated with radiotherapy alone. These results could inform optimal trial design and may be helpful information for patients evaluated in follow-up. Trial Registration: ClinicalTrials.gov Identifier: NCT00033631; NCT00331773.


Subject(s)
Prostatic Neoplasms , Male , Humans , Aged , Prospective Studies , Randomized Controlled Trials as Topic , Prostatic Neoplasms/radiotherapy , Prostate , Prostate-Specific Antigen
SELECTION OF CITATIONS
SEARCH DETAIL