Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(31): 20575-20587, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30059091

ABSTRACT

Surface energy is a fundamental property of metallic nanoparticles (MeNPs), which plays a crucial role in nucleation and growth and has strong implications for the application and environmental impact of MeNPs. Surface energy (J m-2) can be size dependent, but experimental data on surface energy trends for MeNPs are inconclusive. Computational chemistry may resolve the issue, but the location and area of the surface used for scaling, which dramatically influences the outcome and interpretation, has not been properly investigated. The size dependency of the surface energy can only be determined by scaling to the thermodynamic surface of tension. To identify this, we have derived a generalized Tolman approach for non-spherical particles, which is used to analyze the thermodynamic consistency of various surface definitions. Only the physical surface, defined here, is consistent with the surface of tension. Scaling of recent computational data for faceted MeNPs to this surface yields a low size dependency of surface energy, in good agreement with the Tolman lengths corresponding to its interfacial position. We find Tolman lengths of -0.03 nm for icosahedra and -0.04 nm for cuboctahedra of gold or silver. With this result, our approach can be used to quantify the twinning energy for icosahedral nanoparticles, being ∼0.06 J per m2 twin area. To understand the unorthodox negative Tolman lengths, we have analyzed the surface energetics of the solid-gas interface of metals in relation to the liquid-vapor interface of water. Surface entropy is found to be imperative in determining the size dependence of surface free energy. At room temperature, the influence of surface entropy on surface enthalpy is much smaller for metals than for water. It explains why these two interfaces have opposite size dependencies of the surface Gibbs free energy and opposite signs of the Tolman length. For water, forming nanodroplets or nanobubbles, the Tolman length is negative (∼-0.014 nm) for the surface enthalpy, but positive (∼+0.06 ± 0.02 nm) for the surface Gibbs free energy. For MeNPs at room temperature, both entities are negative, but at high temperature, the increased surface entropy term may cause the size dependency of surface Gibbs free energy to become reversed.

2.
Langmuir ; 31(49): 13361-72, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26595806

ABSTRACT

The toxicity of silver nanoparticles (AgNPs) has been related to the release of ionic silver. This process is influenced by a large variety of factors and is poorly understood. The key to understanding Ag(+) release by AgNPs is its subvalency. This is a fundamental property of Ag that can be elucidated by analyzing the crystal structures of a specific class of Ag materials as well as MO/DFT (molecular orbital/density functional theory)-optimized Ag13(OH)4 clusters, being precursors of AgNPs. Semimetallic silver at the (111) faces of AgNPs has a subvalency of +(1)/3 v.u., forming ≡Ag3OH(0) surface groups with a maximum site density of 4.7 sites/nm(2). Oxidative dissolution may remove these groups with the simultaneous formation of oxygen radicals that may further interact with the surface via different pathways. Reactive oxygen species (ROS) can create a circular process with the dissolution of ≡Ag3OH(0), exposure of new metallic sites at the underlying lattice, and subsequent oxidation to ≡Ag3OH(0). This regeneration process is interrupted by the penetration of O(•) radicals into the lattice, forming highly stable Ag6O octahedra with subvalent silver that protects the AgNP from further oxidation. A thermodynamic model has been developed that quantitatively describes the equilibrium condition between ≡Ag3OH(0) and ≡Ag6O(0) and explains a large variety of collectively observed phenomena.

3.
Environ Toxicol Chem ; 33(4): 743-52, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24318461

ABSTRACT

The impact of silver nanoparticles (AgNP; at 0 mg Ag/kg, 1.5 mg Ag/kg, 15.4 mg Ag/kg, and 154 mg Ag/kg soil) and silver nitrate (AgNO3 ; 15.4 mg Ag/kg soil) on earthworms, Lumbricus rubellus, was assessed. A 4-wk exposure to the highest AgNP treatment reduced growth and reproduction compared with the control. Silver nitrate (AgNO3 ) exposure also impaired reproduction, but not as much as the highest AgNP treatment. Long-term exposure to the highest AgNP treatment caused complete juvenile mortality. All AgNP treatments induced tissue pathology. Population modeling demonstrated reduced population growth rates for the AgNP and AgNO3 treatments, and no population growth at the highest AgNP treatment because of juvenile mortality. Analysis of AgNP treated soil samples revealed that single AgNP and AgNP clusters were present in the soil, and that the total Ag in soil porewater remained high throughout the long-term experiment. In addition, immune cells (coelomocytes) of earthworms showed sensitivity to both AgNP and AgNO3 in vitro. Overall, the present study indicates that AgNP exposure may affect earthworm populations and that the exposure may be prolonged because of the release of a dissolved Ag fraction to soil porewater.


Subject(s)
Metal Nanoparticles/toxicity , Oligochaeta/drug effects , Silver Nitrate/toxicity , Silver/toxicity , Soil Pollutants/toxicity , Animals , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Oligochaeta/physiology , Oligochaeta/ultrastructure , Particle Size , Reproduction/drug effects , Silver/chemistry
4.
Environ Sci Technol ; 47(16): 9182-9, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23875678

ABSTRACT

Fulvic and humic acids have a large variability in binding to metal (hydr) oxide surfaces and interact differently with oxyanions, as examined here experimentally. Pyrogenic humic acid has been included in our study since it will be released to the environment in the case of large-scale application of biochar, potentially creating Darks Earths or Terra Preta soils. A surface complexation approach has been developed that aims to describe the competitive behavior of natural organic matter (NOM) in soil as well as model systems. Modeling points unexpectedly to a strong change of the molecular conformation of humic acid (HA) with a predominant adsorption in the Stern layer domain at low NOM loading. In soil, mineral oxide surfaces remain efficiently loaded by mineral-protected organic carbon (OC), equivalent with a layer thickness of ≥ ~0.5 nm that represents at least 0.1-1.0% OC, while surface-associated OC may be even three times higher. In natural systems, surface complexation modeling should account for this pervasive NOM coverage. With our charge distribution model for NOM (NOM-CD), the pH-dependent oxyanion competition of the organo-mineral oxide fraction can be described. For pyrogenic HA, a more than 10-fold increase in dissolved phosphate is predicted at long-term applications of biochar or black carbon.


Subject(s)
Humic Substances , Iron Compounds/chemistry , Minerals/chemistry , Models, Chemical , Phosphates/chemistry , Charcoal/chemistry , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...