Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 130(5): 2673-2688, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32310221

ABSTRACT

Tumor-associated peptide-human leukocyte antigen complexes (pHLAs) represent the largest pool of cell surface-expressed cancer-specific epitopes, making them attractive targets for cancer therapies. Soluble bispecific molecules that incorporate an anti-CD3 effector function are being developed to redirect T cells against these targets using 2 different approaches. The first achieves pHLA recognition via affinity-enhanced versions of natural TCRs (e.g., immune-mobilizing monoclonal T cell receptors against cancer [ImmTAC] molecules), whereas the second harnesses an antibody-based format (TCR-mimic antibodies). For both classes of reagent, target specificity is vital, considering the vast universe of potential pHLA molecules that can be presented on healthy cells. Here, we made use of structural, biochemical, and computational approaches to investigate the molecular rules underpinning the reactivity patterns of pHLA-targeting bispecifics. We demonstrate that affinity-enhanced TCRs engage pHLA using a comparatively broad and balanced energetic footprint, with interactions distributed over several HLA and peptide side chains. As ImmTAC molecules, these TCRs also retained a greater degree of pHLA selectivity, with less off-target activity in cellular assays. Conversely, TCR-mimic antibodies tended to exhibit binding modes focused more toward hot spots on the HLA surface and exhibited a greater degree of crossreactivity. Our findings extend our understanding of the basic principles that underpin pHLA selectivity and exemplify a number of molecular approaches that can be used to probe the specificity of pHLA-targeting molecules, aiding the development of future reagents.


Subject(s)
HLA Antigens/immunology , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , Amino Acid Sequence , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/genetics , Antibodies, Bispecific/immunology , Antibodies, Neoplasm/chemistry , Antibodies, Neoplasm/genetics , Antibodies, Neoplasm/immunology , Antibody Specificity , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cell Line , Cell Line, Tumor , Crystallography, X-Ray , HLA Antigens/chemistry , HLA Antigens/genetics , Humans , Indicators and Reagents , Models, Molecular , Molecular Dynamics Simulation , Molecular Mimicry/genetics , Molecular Mimicry/immunology , Peptides/chemistry , Peptides/genetics , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology
2.
J Virol ; 91(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28275182

ABSTRACT

The antiviral effects of hepatitis C virus (HCV)-specific CD8 T cells have been shown in an HCV replicon system but not in an authentic infectious HCV cell culture (HCVcc) system. Here, we developed tools to examine the antigenicity of HCV-infected HLA-A2-positive Huh7.5 hepatoma cells (Huh7.5A2 cells) in activating HCV-specific CD8 T cells and the downstream antiviral effects. Infectious HCV epitope mutants encoding the well-defined genotype 1a-derived HLA-A2-restricted HCV NS3-1073 or NS5-2594 epitope were generated from a genotype 2a-derived HCV clone (Jc1Gluc2A) by site-directed mutagenesis. CD8 T-cell lines specific for NS3-1073 and NS5-2594 were expanded from HCV-seropositive persons by peptide stimulation in vitro or engineered from HCV-seronegative donor T cells by transduction of a lentiviral vector expressing HCV-specific T-cell receptors. HCV-specific CD8 T cells were cocultured with Huh7.5 cells that were pulsed with titrating doses of HCV epitope peptides or infected with HCV epitope mutants. HCV-specific CD8 T-cell activation (CD107a, gamma interferon, macrophage inflammatory protein 1ß, tumor necrosis factor alpha) was dependent on the peptide concentrations and the relative percentages of HCV-infected Huh7.5A2 cells. HCV-infected Huh7.5A2 cells activated HCV-specific CD8 T cells at levels comparable to those achieved with 0.1 to 2 µM pulsed peptides, providing a novel estimate of the level at which endogenously processed HCV epitopes are presented on HCV-infected cells. While HCV-specific CD8 T-cell activation with cytolytic and antiviral effects was blunted by PD-L1 expression on HCV-infected Huh7.5A2 cells, resulting in the improved viability of Huh7.5A2 cells, PD-1 blockade reversed this effect, producing enhanced cytolytic elimination of HCV-infected Huh7.5A2 cells. Our findings, obtained using an infectious HCVcc system, show that the HCV-specific CD8 T-cell function is modulated by antigen expression levels, the percentage of HCV-infected cells, and the PD-1/PD-L1 pathways and has antiviral and cytotoxic effects.IMPORTANCE We developed several novel molecular and immunological tools to study the interactions among HCV, HCV-infected hepatocytes, and HCV-specific CD8 T cells. Using these tools, we show the level at which HCV-infected hepatoma cells present endogenously processed HCV epitopes to HCV-specific CD8 T cells with antiviral and cytotoxic effects. We also show the marked protective effect of PD-L1 expression on HCV-infected hepatoma cells against HCV-specific CD8 T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hepacivirus/immunology , Hepatocytes/virology , B7-H1 Antigen/genetics , CD8-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Chemokine CCL4/genetics , Coculture Techniques , Cytotoxicity Tests, Immunologic , HLA-A2 Antigen/immunology , Hepacivirus/genetics , Hepatocytes/immunology , Humans , Interferon-gamma/genetics , Lymphocyte Activation , Lysosomal-Associated Membrane Protein 1/genetics , Mutagenesis, Site-Directed , Peptides/pharmacology , Receptors, Antigen, T-Cell/genetics , Transduction, Genetic , Tumor Necrosis Factor-alpha/genetics
3.
Proc Natl Acad Sci U S A ; 113(9): E1266-75, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26884207

ABSTRACT

Cluster of differentiation 1c (CD1c)-dependent self-reactive T cells are abundant in human blood, but self-antigens presented by CD1c to the T-cell receptors of these cells are poorly understood. Here we present a crystal structure of CD1c determined at 2.4 Å revealing an extended ligand binding potential of the antigen groove and a substantially different conformation compared with known CD1c structures. Computational simulations exploring different occupancy states of the groove reenacted these different CD1c conformations and suggested cholesteryl esters (CE) and acylated steryl glycosides (ASG) as new ligand classes for CD1c. Confirming this, we show that binding of CE and ASG to CD1c enables the binding of human CD1c self-reactive T-cell receptors. Hence, human CD1c adopts different conformations dependent on ligand occupancy of its groove, with CE and ASG stabilizing CD1c conformations that provide a footprint for binding of CD1c self-reactive T-cell receptors.


Subject(s)
Antigens, CD1/immunology , Cholesterol Esters/metabolism , Glycoproteins/immunology , T-Lymphocytes/immunology , Antigens, CD1/chemistry , Antigens, CD1d , Glycoproteins/chemistry , Humans , Molecular Dynamics Simulation , Protein Conformation
4.
Eur J Immunol ; 42(12): 3174-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22949370

ABSTRACT

T-cell destiny during thymic selection depends on the affinity of the TCR for autologous peptide ligands presented in the context of MHC molecules. This is a delicately balanced process; robust binding leads to negative selection, yet some affinity for the antigen complex is required for positive selection. All TCRs of the resulting repertoire thus have some intrinsic affinity for an MHC type presenting an assortment of peptides. Generally, TCR affinities of peripheral T cells will be low toward self-derived peptides, as these would have been presented during thymic selection, whereas, by serendipity, binding to pathogen-derived peptides that are encountered de novo could be stronger. A crucial question in assessing immunotherapeutic strategies for cancer is whether natural TCR repertoires have the capacity for efficiently recognizing tumor-associated peptide antigens. Here, we report a comprehensive comparison of TCR affinities to a range of HLA-A2 presented antigens. TCRs that bind viral antigens fall within a strikingly higher affinity range than those that bind cancer-related antigens. This difference may be one of the key explanations for tumor immune escape and for the deficiencies of T-cell vaccines against cancer.


Subject(s)
Antigen Presentation , HLA-A2 Antigen/immunology , Neoplasm Proteins/immunology , Neoplasms/immunology , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Humans , Neoplasms/therapy , Thymus Gland/immunology
5.
Nat Med ; 18(6): 980-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22561687

ABSTRACT

T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)­mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.


Subject(s)
Cytotoxicity, Immunologic , Neoplasms, Experimental/therapy , Receptors, Antigen, T-Cell/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , Humans , Immunologic Memory , Immunotherapy , Interferon-gamma/biosynthesis , Lymphocyte Activation , Mice , Mice, SCID , Neoplasms, Experimental/immunology
6.
Nat Immunol ; 13(3): 283-9, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22245737

ABSTRACT

The structural characteristics of the engagement of major histocompatibility complex (MHC) class II-restricted self antigens by autoreactive T cell antigen receptors (TCRs) is established, but how autoimmune TCRs interact with complexes of self peptide and MHC class I has been unclear. Here we examined how CD8(+) T cells kill human islet beta cells in type 1 diabetes via recognition of a human leukocyte antigen HLA-A*0201-restricted glucose-sensitive preproinsulin peptide by the autoreactive TCR 1E6. Rigid 'lock-and-key' binding underpinned the 1E6-HLA-A*0201-peptide interaction, whereby 1E6 docked similarly to most MHC class I-restricted TCRs. However, this interaction was extraordinarily weak because of limited contacts with MHC class I. TCR binding was highly peptide centric, dominated by two residues of the complementarity-determining region 3 (CDR3) loops that acted as an 'aromatic-cap' over the complex of peptide and MHC class I (pMHCI). Thus, highly focused peptide-centric interactions associated with suboptimal TCR-pMHCI binding affinities might lead to thymic escape and potential CD8(+) T cell-mediated autoreactivity.


Subject(s)
Apoptosis , CD8-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Insulin-Secreting Cells/immunology , CD8-Positive T-Lymphocytes/chemistry , Histocompatibility Antigens/immunology , Humans , Insulin-Secreting Cells/pathology , Models, Molecular , Protein Structure, Tertiary , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology
7.
Mol Biotechnol ; 45(2): 140-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20143183

ABSTRACT

Previously, we have described the use of phage display to generate high affinity disulfide bond-linked T cell receptors (TCRs). The affinities of the mutant TCRs were analysed after refolding of separately expressed alpha and beta chains from Escherichia coli inclusion bodies. This approach is only suitable for the analysis of small numbers of TCR variants. An attractive alternative would be soluble expression within the bacterial periplasm, but the generic production of TCRs within the E. coli periplasm has so far not proved successful. Here we show that functional, soluble TCR can be produced within the cytoplasm of trxB gor mutant E. coli strains, with maximum yields of 3.4 mg/l. We also investigated the effect of coexpressing the folding modulators Skp and DsbC finding that the TCR expression levels were largely unaffected by these chaperones. Importantly, we demonstrated that the amount of protein purified from 50 ml starter cultures was sufficient to show functionality of the TCR by specific antigen binding in both ELISA and surface plasmon resonance (SPR) assays. This TCR production method has the potential to allow rapid and medium throughput analysis of affinity-matured TCRs selected from TCR phage display libraries.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Glutathione Reductase/genetics , Receptors, Antigen, T-Cell/biosynthesis , Thioredoxin-Disulfide Reductase/genetics , Amino Acid Sequence , Base Sequence , Chromatography, Affinity , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disulfides/metabolism , Enzyme-Linked Immunosorbent Assay , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Glutathione Reductase/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Molecular Sequence Data , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Surface Plasmon Resonance , Thioredoxin-Disulfide Reductase/metabolism
8.
Nat Med ; 14(12): 1390-5, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18997777

ABSTRACT

HIV's considerable capacity to vary its HLA-I-restricted peptide antigens allows it to escape from host cytotoxic T lymphocytes (CTLs). Nevertheless, therapeutics able to target HLA-I-associated antigens, with specificity for the spectrum of preferred CTL escape mutants, could prove effective. Here we use phage display to isolate and enhance a T-cell antigen receptor (TCR) originating from a CTL line derived from an infected person and specific for the immunodominant HLA-A(*)02-restricted, HIVgag-specific peptide SLYNTVATL (SL9). High-affinity (K(D) < 400 pM) TCRs were produced that bound with a half-life in excess of 2.5 h, retained specificity, targeted HIV-infected cells and recognized all common escape variants of this epitope. CD8 T cells transduced with this supraphysiologic TCR produced a greater range of soluble factors and more interleukin-2 than those transduced with natural SL9-specific TCR, and they effectively controlled wild-type and mutant strains of HIV at effector-to-target ratios that could be achieved by T-cell therapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV-1/immunology , Receptors, Antigen, T-Cell/immunology , Amino Acid Sequence , Cells, Cultured , Gene Products, gag/chemistry , Gene Products, gag/immunology , Humans , Mutation/genetics , Peptide Fragments/chemistry , Peptide Fragments/immunology , Protein Binding , Solubility
9.
J Immunol ; 179(9): 5845-54, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17947658

ABSTRACT

We examined the activity of human T cells engineered to express variants of a single TCR (1G4) specific for the cancer/testis Ag NY-ESO-1, generated by bacteriophage display with a wide range of affinities (from 4 microM to 26 pM). CD8(+) T cells expressing intermediate- and high-affinity 1G4 TCR variants bound NY-ESO-1/HLA-A2 tetramers with high avidity and Ag specificity, but increased affinity was associated with a loss of target cell specificity of the TCR gene-modified cells. T cells expressing the highest affinity TCR (K(D) value of 26 pM) completely lost Ag specificity. The TCRs with affinities in the midrange, K(D) 5 and 85 nM, showed specificity only when CD8 was absent or blocked, while the variant TCRs with affinities in the intermediate range-with K(D) values of 450 nM and 4 microM-demonstrated Ag-specific recognition. Although the biological activity of these two relatively low-affinity TCRs was comparable to wild-type reactivity in CD8(+) T cells, introduction of these TCR dramatically increased the reactivity of CD4(+) T cells to tumor cell lines.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Neoplasms/immunology , Neoplasms/pathology , Peptide Library , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Amino Acid Sequence , Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Survival , Cells, Cultured , Cross Reactions/immunology , Histocompatibility Antigens/immunology , Humans , Lymphocyte Activation/immunology , Molecular Sequence Data , Neoplasms/metabolism , Receptors, Antigen, T-Cell/chemistry , Sensitivity and Specificity
10.
Curr Opin Pharmacol ; 5(4): 438-43, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15939669

ABSTRACT

T cell receptors are antigen-specific proteins that have evolved to recognize peptide antigens presented by human leukocyte antigen molecules on most cell types. Like antibodies, T cell receptors are produced with huge diversity but, unlike antibodies, T cell receptors are not secreted and do not undergo somatic mutations that increase their affinities for antigen. Recently, however, methods have been developed that enable T cell receptors to be engineered as soluble proteins with extremely high affinities, and fused to various immune-modulator molecules. T cell receptors are now set to unlock a whole new range of targets with key roles in cancer, viral infections, autoimmune diseases and allergies.


Subject(s)
Immunotherapy/methods , Receptors, Antigen, T-Cell/immunology , Animals , Humans , Immunotherapy/trends , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/chemistry , Solubility , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/trends
11.
Nat Biotechnol ; 23(3): 349-54, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15723046

ABSTRACT

Peptides derived from almost all proteins, including disease-associated proteins, can be presented on the cell surface as peptide-human leukocyte antigen (pHLA) complexes. T cells specifically recognize pHLA with their clonally rearranged T-cell receptors (TCRs), whose natural affinities are limited to approximately 1-100 muM. Here we describe the display of ten different human TCRs on the surface of bacteriophage, stabilized by a nonnative interchain disulfide bond. We report the directed evolution of high-affinity TCRs specific for two different pHLAs: the human T-cell lymphotropic virus type 1 (HTLV-1) tax(11-19) peptide-HLA-A(*)0201 complex and the NY-ESO-1(157-165) tumor-associated peptide antigen-HLA-A(*)0201 complex, with affinities of up to 2.5 nM and 26 pM, respectively, and we demonstrate their high specificity and sensitivity for targeting of cell-surface pHLAs.


Subject(s)
Antibody Affinity , Antibody Formation , Complementarity Determining Regions/genetics , Directed Molecular Evolution/methods , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/immunology , Microchemistry/methods , Peptide Library , Protein Engineering/methods , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Humans , Immunoglobulin Fab Fragments/genetics , Protein Binding , Receptors, Antigen, T-Cell/biosynthesis , Recombination, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...