Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Clin Med ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38541858

ABSTRACT

Background: Scientific literature lacks strong support for using narrow diameter implants (NDI) in high masticatory force areas, especially in molars. Implant splinting in cases of multiple missing teeth reduces lateral forces, improves force distribution, and minimizes stress on implants. However, no studies have evaluated the fatigue load resistance of unitary or splinted implants. Methods: This in vitro study compares five groups of new metal alloy implants, including unitary and splinted implants with varying diameters. Mechanical characterization was assessed using a BIONIX 370 testing machine (MTS, Minneapolis, MN, USA) according to ISO 14801. For each of the five study sample groups, (n = 5) specimens underwent monotonic uniaxial compression at break testing and (n = 15) cyclic loading to determine the maximum force (Fmax) and the fatigue life (LF) values. Scanning electron microscopy (SEM) was employed for the fractographic analysis of the fractured samples. Results: The Fmax values for unitary samples ranged from 196 N to 246 N, whereas the two-splinted samples displayed significantly higher values, ranging from 2439 N to 3796 N. Similarly, the LF values for unitary samples ranged from 118 N to 230 N, while the two-splinted samples exhibited notably higher values, ranging from 488 N to 759 N. Conclusions: The observed resistance difference between sample groups in terms of Fmax and LF may be due to variations in effective cross-sectional area, determined by implant diameter and number. Additionally, this disparity may indicate a potential stiffening effect resulting from the splinting process. These findings have significant implications for dental clinical practice, suggesting the potential use of splinted sets of small-sized NDI as replacements for posterior dentition (premolars and molars) in cases of alveolar bone ridge deficiencies.

2.
J Funct Biomater ; 14(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36826866

ABSTRACT

Digital dentistry and new techniques for the dental protheses' suprastructure fabrication have undergone a great evolution in recent years, revolutionizing the quality of dental prostheses. The aim of this work is to determine whether the best horizontal marginal fit is provided by the CAD-CAM technique or by laser sintering. These values have been compared with the traditional casting technique. A total of 30 CAD-CAM models, 30 laser sintering models, and 10 casting models (as control) were fabricated. The structures realized with chromium-cobalt (CrCo) have been made by six different companies, always with the same model. Scanning electron microscopy with a high-precision image analysis system was used, and 10,000 measurements were taken for each model on the gingival (external) and palatal (internal) side. Thus, a total of 1,400,000 images were measured. It was determined that the CAD-CAM technique is the one that allows the best adjustments in the manufacturing methods studied. The laser sintering technique presents less adjustment, showing the presence of porosities and volume contraction defects due to solidification processes and heterogeneities in the chemical composition (coring). The technique with the worst adjustments is the casting technique, containing numerous defects in the suprastructure. The statistical analysis of results reflected the presence of statistically significant gap differences between the three manufacturing methods analyzed (p < 0.05), with the samples manufactured by CAD-CAM and by traditional casting processes being the ones that showed lower and higher values, respectively. No statistically significant differences in fit were observed between the palatal and gingival fit values, regardless of the manufacturing method used. No statistically significant differences in adjustment between the different manufacturing centers were found, regardless of the process used.

3.
Int J Mol Sci ; 23(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35163682

ABSTRACT

A lack of primary stability and osteointegration in metallic implants may result in implant loosening and failure. Adding porosity to metallic implants reduces the stress shielding effect and improves implant performance, allowing the surrounding bone tissue to grow into the scaffold. However, a bioactive surface is needed to stimulate implant osteointegration and improve mechanical stability. In this study, porous titanium implants were produced via powder sintering to create different porous diameters and open interconnectivity. Two strategies were used to generate a bioactive surface on the metallic foams: (1) an inorganic alkali thermochemical treatment, (2) grafting a cell adhesive tripeptide (RGD). RGD peptides exhibit an affinity for integrins expressed by osteoblasts, and have been reported to improve osteoblast adhesion, whereas the thermochemical treatment is known to improve titanium implant osseointegration upon implantation. Bioactivated scaffolds and control samples were implanted into the tibiae of rabbits to analyze the effect of these two strategies in vivo regarding bone tissue regeneration through interconnected porosity. Histomorphometric evaluation was performed at 4 and 12 weeks after implantation. Bone-to-implant contact (BIC) and bone in-growth and on-growth were evaluated in different regions of interest (ROIs) inside and outside the implant. The results of this study show that after a long-term postoperative period, the RGD-coated samples presented higher quantification values of quantified newly formed bone tissue in the implant's outer area. However, the total analyzed bone in-growth was observed to be slightly greater in the scaffolds treated with alkali thermochemical treatment. These results suggest that both strategies contribute to enhancing porous metallic implant stability and osteointegration, and a combination of both strategies might be worth pursuing.


Subject(s)
Alkalies/pharmacology , Coated Materials, Biocompatible/pharmacology , Metallurgy , Oligopeptides/pharmacology , Osseointegration , Temperature , Tissue Scaffolds/chemistry , Titanium/pharmacology , Animals , Female , Implants, Experimental , Osseointegration/drug effects , Osteogenesis/drug effects , Porosity , Powders , Rabbits
4.
Materials (Basel) ; 14(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34947480

ABSTRACT

The present experimental trial uses two types of dental implants, one made of titanium (Ti6Al4V) and the other one of zirconia (ZrO2), but both of identical design, to compare their stability and micro-movements values under load. One of each type of implant (n = 42) was placed into 21 cow ribs, recording the insertion torque and the resonance frequency using a specific transducer. Subsequently, a prosthetic crown made of PMMA was screwed onto each of the implants in the sample. They were then subjected to a static compression load on the vestibular cusp of the crown. The resulting micromovements were measured. The zirconia implants obtained a higher mean of both IT and RFA when compared with those of titanium, with statistically significant differences in both cases (p = 0.0483 and p = 0.0296). However, the micromovement values when load was applied were very similar for both types, with the differences between them (p = 0.3867) not found to be statistically significant. The results show that zirconia implants have higher implant stability values than titanium implants. However, the fact that there are no differences in micromobility values implies that caution should be exercised when applying clinical protocols for zirconia based on RFA, which only has evidence for titanium.

5.
Materials (Basel) ; 14(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34772042

ABSTRACT

In the field of implant dentistry there are several mechanisms by which metal particles can be released into the peri-implant tissues, such as implant insertion, corrosion, wear, or surface decontamination techniques. The aim of this study was to evaluate the corrosion behavior of Ti6Al4V particles released during implantoplasty of dental implants treated due to periimplantitis. A standardized protocol was used to obtain metal particles produced during polishing the surface of Ti6Al4V dental implants. Physicochemical and biological characterization of the particles were described in Part I, while the mechanical properties and corrosion behavior have been studied in this study. Mechanical properties were determined by means of nanoindentation and X-ray diffraction. Corrosion resistance was evaluated by electrochemical testing in an artificial saliva medium. Corrosion parameters such as critical current density (icr), corrosion potential (ECORR), and passive current density (iCORR) have been determined. The samples for electrochemical behavior were discs of Ti6Al4V as-received and discs with the same mechanical properties and internal stresses than the particles from implantoplasty. The discs were cold-worked at 12.5% in order to achieve the same properties (hardness, strength, plastic strain, and residual stresses). The implantoplasty particles showed a higher hardness, strength, elastic modulus, and lower strain to fracture and a compressive residual stress. Resistance to corrosion of the implantoplasty particles decreased, and surface pitting was observed. This fact is due to the increase of the residual stress on the surfaces which favor the electrochemical reactions. The values of corrosion potential can be achieved in normal conditions and produce corroded debris which could be cytotoxic and cause tattooing in the soft tissues.

6.
Materials (Basel) ; 13(23)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255355

ABSTRACT

Although ceramic-on-ceramic (CoC) bearings have been shown to produce the smallest amount of wear volume in vitro as well as in vivo studies when used for total hip arthroplasties (THA), concerns about the failure of these bearing surfaces persist due to early failures observed after short postoperative time. In this study, an exhaustive analysis of the early failure occurred on the new generation of ceramic bearings, consisting of a composite alumina matrix-based material reinforced with yttria-stabilized tetragonal zirconia (Y-TZP) particles, chromium dioxide, and strontium crystals, was performed. For this study, 118 CoC bearings from 117 patients were revised. This article describes a group of mechanical failure CoC-bearing BIOLOX THA hip prosthesis patients without trauma history. The retrieved samples were observed under scanning electron microscopy (SEM), composition was analyzed with energy dispersive X-ray spectroscopy (EDX), and damaged surfaces were analyzed by grazing-incidence X-ray diffraction (GI-XRD) and white light interferometry. In the short term, CoC articulations provided similar mechanical behavior and functional outcome to those in XLPE cases. However, 5% more early mechanical failures cases were observed for the ceramic components. Although the fracture rate of third generation CoC couples is low, the present study shows the need to further improve the third generation of CoC-bearing couples for THA. Despite the improved wear compared to other materials, stress concentrators are sources of initial crack propagation, such as those found in the bore-trunnion areas. Moreover, in view of the evidence observed in this study, the chipping observed was due to the presence of monoclinic phase of the Y-TZP instead of tetragonal, which presents better mechanical properties. The results showed that total safety after receiving a THA is still a goal to be pursued.

7.
Polymers (Basel) ; 12(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244655

ABSTRACT

Infections related to dental implants are a common complication that can ultimately lead to implant failure, and thereby carries significant health and economic costs. In order to ward off these infections, this paper explores the immobilization of triethoxysilylpropyl succinic anhydride (TESPSA, TSP) silane onto dental implants, and the interaction of two distinct monospecies biofilms and an oral plaque with the coated titanium samples. To this end, titanium disks from prior machining were first activated by a NaOH treatment and further functionalized with TESPSA silane. A porous sodium titanate surface was observed by scanning electron microscopy and X-ray photoelectron spectroscopy analyses confirmed the presence of TESPSA on the titanium samples (8.4% for Ti-N-TSP). Furthermore, a lactate dehydrogenase assay concluded that TESPSA did not have a negative effect on the viability of human fibroblasts. Importantly, the in vitro effect of modified surfaces against Streptococcus sanguinis, Lactobacillus salivarius and oral plaque were studied using a viable bacterial adhesion assay. A significant reduction was achieved in all cases but, as expected, with different effectiveness against simple mono-species biofilm (ratio dead/live of 0.4) and complete oral biofilm (ratio dead/live of 0.6). Nevertheless, this approach holds a great potential to provide dental implants with antimicrobial properties.

8.
Int J Mol Sci ; 19(9)2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30200178

ABSTRACT

In this study, highly-interconnected porous titanium implants were produced by powder sintering with different porous diameters and open interconnectivity. The actual foams were produced using high cost technologies: Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), and spark plasma sintering, and the porosity and/or interconnection was not optimized. The aim was to generate a bioactive surface on foams using two different strategies, based on inorganic thermo-chemical treatment and organic coating by peptide adsorption, to enhance osseointegration. Porosity was produced using NaCl as a space holder and polyethyleneglicol as a binder phase. Static and fatigue tests were performed in order to determine mechanical behaviors. Surface bioactivation was performed using a thermo-chemical treatment or by chemical adsorption with peptides. Osteoblast-like cells were cultured and cytotoxicity was measured. Bioactivated scaffolds and a control were implanted in the tibiae of rabbits. Histomorphometric evaluation was performed at 4 weeks after implantation. Interconnected porosity was 53% with an average diameter of 210 µm and an elastic modulus of around 1 GPa with good mechanical properties. The samples presented cell survival values close to 100% of viability. Newly formed bone was observed inside macropores, through interconnected porosity, and on the implant surface. Successful bone colonization of inner structure (40%) suggested good osteoconductive capability of the implant. Bioactivated foams showed better results than non-treated ones, suggesting both bioactivation strategies induce osteointegration capability.


Subject(s)
Coated Materials, Biocompatible/chemistry , Osseointegration/drug effects , Osteoblasts/cytology , Tibia/surgery , Titanium/chemistry , Adsorption , Animals , Cell Survival , Cells, Cultured , Female , Porosity , Prostheses and Implants , Rabbits , Stress, Mechanical , Surface Properties , Temperature
9.
J Mater Sci Mater Med ; 27(10): 151, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27582071

ABSTRACT

Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 µm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium.


Subject(s)
Osteoblasts/metabolism , Oxides/chemistry , Titanium/chemistry , Animals , Biocompatible Materials/chemistry , Compressive Strength , Elastic Modulus , Female , Friction , Materials Testing , Microscopy, Electron, Scanning , Porosity , Powders , Prostheses and Implants , Prosthesis Design , Rabbits , Spectrum Analysis, Raman , Stress, Mechanical , Surface Properties , Temperature
10.
J Prosthet Dent ; 111(2): 116-23, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24176182

ABSTRACT

STATEMENT OF PROBLEM: The microgap between implant components has been associated with complications such as screw loosening or adverse biologic responses. PURPOSE: The purpose of this study was to quantify the microroughness of the mating surfaces of implant components manufactured with different processes, to quantify the microgap between implant components, and to determine whether a correlation exists between microroughness and the microgap. MATERIAL AND METHODS: Nine dental implants with a standard external connection were paired with 3 milled, 3 cast, and 3 sintered compatible cobalt-chromium alloy abutments. The abutment surface was examined, and the roughness parameter Sz was measured by using a white-light interferometric microscope at ×10 to ×100 magnification. The abutment surface and the microgap of the implant-abutment connection were observed with scanning electron microscopy, and the microgap width was quantified from micrographs made of each implant-abutment pair. The mean and standard deviation of roughness and microgap were evaluated. A 1-way ANOVA (α=.05) was used to assess the influence of the manufacturing process on roughness and microgap. The Pearson correlation was used to check dependence between roughness and microgap. RESULTS: The milled abutments possessed a connection geometry with defined edges and a mean roughness of 29 µm, sintered abutments showed a blurred but functional connection with a roughness of 115 µm, and cast abutments showed a connection with a loss of axial symmetry and a roughness of 98 µm. A strong correlation was found between the roughness values on the mating surfaces and the microgap width. CONCLUSIONS: The milled components were smoother than the cast or sintered components. A correlation was found between surface roughness and microgap width.


Subject(s)
Dental Implant-Abutment Design , Dental Implants , Dental Marginal Adaptation , Dental Prosthesis, Implant-Supported , Chromium Alloys/chemistry , Computer-Aided Design , Dental Casting Technique , Dental Prosthesis Design , Humans , Interferometry , Lasers , Materials Testing , Microscopy , Microscopy, Electron, Scanning , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...