Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 83(13): 2240-2257.e6, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37329882

ABSTRACT

The RNA-binding ARS2 protein is centrally involved in both early RNA polymerase II (RNAPII) transcription termination and transcript decay. Despite its essential nature, the mechanisms by which ARS2 enacts these functions have remained unclear. Here, we show that a conserved basic domain of ARS2 binds a corresponding acidic-rich, short linear motif (SLiM) in the transcription restriction factor ZC3H4. This interaction recruits ZC3H4 to chromatin to elicit RNAPII termination, independent of other early termination pathways defined by the cleavage and polyadenylation (CPA) and Integrator (INT) complexes. We find that ZC3H4, in turn, forms a direct connection to the nuclear exosome targeting (NEXT) complex, hereby facilitating rapid degradation of the nascent RNA. Hence, ARS2 instructs the coupled transcription termination and degradation of the transcript onto which it is bound. This contrasts with ARS2 function at CPA-instructed termination sites where the protein exclusively partakes in RNA suppression via post-transcriptional decay.


Subject(s)
Nuclear Proteins , Transcription, Genetic , Nuclear Proteins/metabolism , Transcription Factors/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA Stability/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA
2.
Mol Cell ; 81(3): 514-529.e6, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33385327

ABSTRACT

Termination of RNA polymerase II (RNAPII) transcription in metazoans relies largely on the cleavage and polyadenylation (CPA) and integrator (INT) complexes originally found to act at the ends of protein-coding and small nuclear RNA (snRNA) genes, respectively. Here, we monitor CPA- and INT-dependent termination activities genome-wide, including at thousands of previously unannotated transcription units (TUs), producing unstable RNA. We verify the global activity of CPA occurring at pA sites indiscriminately of their positioning relative to the TU promoter. We also identify a global activity of INT, which is largely sequence-independent and restricted to a ~3-kb promoter-proximal region. Our analyses suggest two functions of genome-wide INT activity: it dampens transcriptional output from weak promoters, and it provides quality control of RNAPII complexes that are unfavorably configured for transcriptional elongation. We suggest that the function of INT in stable snRNA production is an exception from its general cellular role, the attenuation of non-productive transcription.


Subject(s)
Cleavage And Polyadenylation Specificity Factor/metabolism , DNA-Binding Proteins/metabolism , RNA Polymerase II/metabolism , RNA, Small Nuclear/biosynthesis , Transcription Termination, Genetic , Cleavage And Polyadenylation Specificity Factor/genetics , DNA-Binding Proteins/genetics , HeLa Cells , Humans , Polyadenylation , Promoter Regions, Genetic , RNA Polymerase II/genetics , RNA, Small Nuclear/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...