Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
2.
Curr Neuropharmacol ; 22(2): 323-338, 2024.
Article in English | MEDLINE | ID: mdl-37475559

ABSTRACT

The development of new antipsychotics with pro-cognitive properties and less side effects represents a priority in schizophrenia drug research. In this study, we present for the first time a preclinical exploration of the effects of the promising natural atypical antipsychotic Methyl-2-Amino-3- Methoxybenzoate (MAM), a brain-penetrable protoalkaloid from the seed of the plant Nigella damascena. Using animal models related to hyperdopaminergic activity, namely the pharmacogenetic apomorphine (D2/D1 receptor agonist)-susceptible (APO-SUS) rat model and pharmacologically induced mouse and rat models of schizophrenia, we found that MAM reduced gnawing stereotypy and climbing behaviours induced by dopaminergic agents. This predicts antipsychotic activity. In line, MAM antagonized apomorphine-induced c-Fos and NPAS4 mRNA levels in post-mortem brain nucleus accumbens and dorsolateral striatum of APO-SUS rats. Furthermore, phencyclidine (PCP, an NMDA receptor antagonist) and 2,5-Dimethoxy-4-iodoamphetamine (DOI, a 5HT2A/2C receptor agonist) induced prepulse inhibition deficits, reflecting the positive symptoms of schizophrenia, which were rescued by treatment with MAM and atypical antipsychotics alike. Post-mortem brain immunostaining revealed that MAM blocked the strong activation of both PCP- and DOI-induced c-Fos immunoreactivity in a number of cortical areas. Finally, during a 28-day subchronic treatment regime, MAM did not induce weight gain, hyperglycemia, hyperlipidemia or hepato- and nephrotoxic effects, side effects known to be induced by atypical antipsychotics. MAM also did not show any cataleptic effects. In conclusion, its brain penetrability, the apparent absence of preclinical side effects, and its ability to antagonize positive and cognitive symptoms associated with schizophrenia make MAM an exciting new antipsychotic drug that deserves clinical testing.


Subject(s)
Antipsychotic Agents , Schizophrenia , Rats , Mice , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Apomorphine/pharmacology , Apomorphine/therapeutic use , Hydroxybenzoate Ethers/therapeutic use , Disease Models, Animal , Cognition
3.
Rheumatology (Oxford) ; 62(10): 3469-3479, 2023 10 03.
Article in English | MEDLINE | ID: mdl-36802235

ABSTRACT

OBJECTIVE: Trained immunity (TI) is a de facto memory program of innate immune cells, characterized by immunometabolic and epigenetic changes sustaining enhanced production of cytokines. TI evolved as a protective mechanism against infections; however, inappropriate activation can cause detrimental inflammation and might be implicated in the pathogenesis of chronic inflammatory diseases. In this study, we investigated the role of TI in the pathogenesis of giant cell arteritis (GCA), a large-vessel vasculitis characterized by aberrant macrophage activation and excess cytokine production. METHODS: Monocytes from GCA patients and from age- and sex-matched healthy donors were subjected to polyfunctional studies, including cytokine production assays at baseline and following stimulation, intracellular metabolomics, chromatin immunoprecipitation-qPCR, and combined ATAC/RNA sequencing. Immunometabolic activation (i.e. glycolysis) was assessed in inflamed vessels of GCA patients with FDG-PET and immunohistochemistry (IHC), and the role of this pathway in sustaining cytokine production was confirmed with selective pharmacologic inhibition in GCA monocytes. RESULTS: GCA monocytes exhibited hallmark molecular features of TI. Specifically, these included enhanced IL-6 production upon stimulation, typical immunometabolic changes (e.g. increased glycolysis and glutaminolysis) and epigenetic changes promoting enhanced transcription of genes governing pro-inflammatory activation. Immunometabolic changes of TI (i.e. glycolysis) were a feature of myelomonocytic cells in GCA lesions and were required for enhanced cytokine production. CONCLUSIONS: Myelomonocytic cells in GCA activate TI programs sustaining enhanced inflammatory activation with excess cytokine production.


Subject(s)
Giant Cell Arteritis , Humans , Giant Cell Arteritis/pathology , Monocytes/metabolism , Trained Immunity , Inflammation , Cytokines
4.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293308

ABSTRACT

Neuroinflammation has emerged as an important factor in the molecular underpinnings of major depressive disorder (MDD) pathophysiology and in the mechanism of action of antidepressants. Among the inflammatory mediators dysregulated in depressed patients, interleukin (IL)-6 has recently been proposed to play a crucial role. IL-6 activates a signaling pathway comprising the JAK/STAT proteins and characterized by a specific negative feedback loop exerted by the cytoplasmic protein suppressor of cytokine signalling-3 (SOCS3). On these bases, here, we explored the potential involvement of IL-6 signaling in the ability of the antidepressant drug agomelatine to normalize the anhedonic-like phenotype induced in the rat by chronic stress exposure. To this aim, adult male Wistar rats were subjected to the chronic mild stress (CMS) paradigm and chronically treated with vehicle or agomelatine. The behavioral evaluation was assessed by the sucrose consumption test, whereas molecular analyses were performed in the prefrontal cortex. We found that CMS was able to stimulate IL-6 production and signaling, including SOCS3 gene and protein expression, but the SOCS3-mediated feedback-loop inhibition failed to suppress the IL-6 cascade in stressed animals. Conversely, agomelatine treatment normalized the stress-induced decrease in sucrose consumption and restored the negative modulation of the IL-6 signaling via SOCS3 expression and activity. Our results provide additional information about the pleiotropic mechanisms that contribute to agomelatine's therapeutic effects.


Subject(s)
Depressive Disorder, Major , Interleukin-6 , Animals , Rats , Male , Interleukin-6/genetics , Interleukin-6/metabolism , Depression/drug therapy , Depression/etiology , Depression/metabolism , Rats, Wistar , Depressive Disorder, Major/drug therapy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Signal Transduction , Inflammation Mediators/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Sucrose
5.
Psychopharmacology (Berl) ; 239(8): 2547-2557, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35459959

ABSTRACT

RATIONALE: Although the occurrence of stressful events is very common during life, their impact may be different depending on the experience severity and duration. Specifically, acute challenges may trigger adaptive responses and even improve the individual's performance. However, such a physiological positive coping can only take place if the underlying molecular mechanisms are properly functioning. Indeed, if these systems are compromised by genetic factors or previous adverse conditions, the response set in motion by an acute challenge may be maladaptive and even cause the insurgence or the relapse of stress-related psychiatric disorders. OBJECTIVES: On these bases, we evaluated in the rat brain the role of the antioxidant component of the redox machinery on the acute stress responsiveness and its modulation by potential detrimental or beneficial events. METHODS: The expression of several antioxidant enzymes was assessed in different brain areas of adult male rats exposed to acute stress 3 weeks after a chronic immobilization paradigm with or without a concomitant treatment with the antipsychotic lurasidone. RESULTS: The acute challenge was able to trigger a marked antioxidant response that, despite the washout period, was impaired by the previous adverse experience and restored by lurasidone in an anatomical-specific manner. CONCLUSIONS: We found that a working antioxidant machinery takes part in acute stress response and may be differentially affected by other experiences. Given the essential role of stress responsiveness in almost every life process, the identification of the underlying mechanisms and their potential pharmacological modulation add further translational value to our data.


Subject(s)
Antipsychotic Agents , Lurasidone Hydrochloride , Animals , Antioxidants/pharmacology , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Humans , Lurasidone Hydrochloride/pharmacology , Male , Rats
6.
Cell Mol Neurobiol ; 42(4): 1225-1240, 2022 May.
Article in English | MEDLINE | ID: mdl-33259004

ABSTRACT

One of the most substantial and established environmental risk factors for neurological and psychiatric disorders is stress exposure, whose detrimental consequences hinge on several variables including time. In this regard the gestational period is known to present an intrinsic vulnerability to environmental insults and thus stressful events during pregnancy can lead to severe consequences on the offspring's brain development with long-term repercussions throughout adulthood. On this basis, we investigated the long-lasting impact of prenatal stress exposure on the susceptibility to the experimental autoimmune encephalomyelitis (EAE), a well-established murine model of multiple sclerosis. Although stress is considered a triggering factor for this chronic, progressive, autoimmune disease, little is known about the underlying mechanisms. To this end, EAE was induced by immunization with MOG35-55/CFA and pertussis toxin administration in adult female C57BL/6 mice born from control or stressed dams exposed to restraint stress during the last days of gestation. Our results demonstrate that gestational stress induces a marked increase in the severity of EAE symptoms in adulthood. Further, we highlight an altered maturation of oligodendrocytes in the spinal cord of prenatally stressed EAE mice, as indicated by the higher levels of GPR17, a marker of immature oligodendrocyte precursor cells. These behavioral and molecular alterations are paralleled by changes in the expression and signaling of the neurotrophin BDNF, an important mediator of neural plasticity that may contribute to stress-induced impaired remyelination. Since several already marketed drugs are able to modulate BDNF levels, these results pave the way to the possibility of repositioning these drugs in multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Brain-Derived Neurotrophic Factor/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Mice , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Nerve Tissue Proteins/metabolism , Oligodendroglia/metabolism , Receptors, G-Protein-Coupled/metabolism , Spinal Cord/metabolism
8.
Blood ; 138(17): 1554-1569, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34077954

ABSTRACT

Trained immunity (TI) is a proinflammatory program induced in monocyte/macrophages upon sensing of specific pathogens and is characterized by immunometabolic and epigenetic changes that enhance cytokine production. Maladaptive activation of TI (ie, in the absence of infection) may result in detrimental inflammation and development of disease; however, the exact role and extent of inappropriate activation of TI in the pathogenesis of human diseases is undetermined. In this study, we uncovered the oncogene-induced, maladaptive induction of TI in the pathogenesis of a human inflammatory myeloid neoplasm (Erdheim-Chester disease, [ECD]), characterized by the BRAFV600E oncogenic mutation in monocyte/macrophages and excess cytokine production. Mechanistically, myeloid cells expressing BRAFV600E exhibit all molecular features of TI: activation of the AKT/mammalian target of rapamycin signaling axis; increased glycolysis, glutaminolysis, and cholesterol synthesis; epigenetic changes on promoters of genes encoding cytokines; and enhanced cytokine production leading to hyperinflammatory responses. In patients with ECD, effective therapeutic strategies combat this maladaptive TI phenotype; in addition, pharmacologic inhibition of immunometabolic changes underlying TI (ie, glycolysis) effectively dampens cytokine production by myeloid cells. This study revealed the deleterious potential of inappropriate activation of TI in the pathogenesis of human inflammatory myeloid neoplasms and the opportunity for inhibition of TI in conditions characterized by maladaptive myeloid-driven inflammation.


Subject(s)
Erdheim-Chester Disease/genetics , Inflammation/genetics , Proto-Oncogene Proteins B-raf/genetics , Cells, Cultured , Epigenesis, Genetic , Erdheim-Chester Disease/immunology , Erdheim-Chester Disease/pathology , Humans , Immunity , Inflammation/immunology , Inflammation/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Oncogenes , Point Mutation , Proto-Oncogene Proteins B-raf/immunology
9.
Cell Rep ; 35(1): 108955, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33826894

ABSTRACT

Trained immunity (TI) is a de facto innate immune memory program induced in monocytes/macrophages by exposure to pathogens or vaccines, which evolved as protection against infections. TI is characterized by immunometabolic changes and histone post-translational modifications, which enhance production of pro-inflammatory cytokines. As aberrant activation of TI is implicated in inflammatory diseases, tight regulation is critical; however, the mechanisms responsible for this modulation remain elusive. Interleukin-37 (IL-37) is an anti-inflammatory cytokine that curbs inflammation and modulates metabolic pathways. In this study, we show that administration of recombinant IL-37 abrogates the protective effects of TI in vivo, as revealed by reduced host pro-inflammatory responses and survival to disseminated candidiasis. Mechanistically, IL-37 reverses the immunometabolic changes and histone post-translational modifications characteristic of TI in monocytes, thus suppressing cytokine production in response to infection. IL-37 thereby emerges as an inhibitor of TI and as a potential therapeutic target in immune-mediated pathologies.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Immunity, Innate , Interleukin-1/pharmacology , Animals , Candidiasis/genetics , Candidiasis/immunology , Candidiasis/microbiology , Epigenesis, Genetic/drug effects , Glycolysis/drug effects , Glycolysis/genetics , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/drug effects , Male , Mice, Inbred C57BL , Neutrophils/drug effects , Neutrophils/metabolism
10.
Pharmacol Res ; 163: 105330, 2021 01.
Article in English | MEDLINE | ID: mdl-33276101

ABSTRACT

Psychiatric disorders represent a critical challenge to our society, given their high global prevalence, complex symptomatology, elusive etiology and the variable effectiveness of pharmacological therapies. Recently, there has been a shift in investigating and redefining these diseases by integrating behavioral observations and multilevel neurobiological measures. Accordingly, endophenotype-oriented studies are needed to develop new therapeutic strategies, with the idea of targeting shared symptoms instead of one defined disease. With these premises, here we investigated the therapeutic properties of chronic treatment with the second-generation antipsychotic blonanserin in counteracting the alterations caused by 7 weeks of Chronic Mild Stress (CMS) in the rat. CMS is a well-established preclinical model able to induce depressive and anxiety-like alterations, which are shared by different psychiatric disorders. Our results demonstrated that the antipsychotic treatment normalizes the CMS-induced emotionality deficits, an effect that may be due to its ability in modulating, within the prefrontal cortex, redox mechanisms, a molecular dysfunction associated with several psychiatric disorders. These evidences provide new insights into the therapeutic properties and potential use of blonanserin as well as in its mechanisms of action and provide further support for the role of oxidative stress in the pathophysiology of psychiatric disorders.


Subject(s)
Antipsychotic Agents/therapeutic use , Piperazines/therapeutic use , Piperidines/therapeutic use , Stress, Psychological/drug therapy , Animals , Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Cytoskeletal Proteins/genetics , Disease Models, Animal , Male , Maze Learning/drug effects , Nerve Tissue Proteins/genetics , Oxidoreductases/genetics , Piperazines/pharmacology , Piperidines/pharmacology , Rats, Wistar , Stress, Psychological/genetics
11.
Front Cell Dev Biol ; 8: 602901, 2020.
Article in English | MEDLINE | ID: mdl-33363161

ABSTRACT

Autophagy is a constitutive pathway that allows the lysosomal degradation of damaged components. This conserved process is essential for metabolic plasticity and tissue homeostasis and is crucial for mammalian post-mitotic cells. Autophagy also controls stem cell fate and defective autophagy is involved in many pathophysiological processes. In this review, we focus on established and recent breakthroughs aimed at elucidating the impact of autophagy in differentiation and homeostasis maintenance of endothelium, muscle, immune system, and brain providing a suitable framework of the emerging results and highlighting the pivotal role of autophagic response in tissue functions, stem cell dynamics and differentiation rates.

12.
Int J Mol Sci ; 21(17)2020 Aug 29.
Article in English | MEDLINE | ID: mdl-32872446

ABSTRACT

Depression is a recurrent disorder, with about 50% of patients experiencing relapse. Exposure to stressful events may have an adverse impact on the long-term course of the disorder and may alter the response to a subsequent stressor. Indeed, not all the systems impaired by stress may normalize during symptoms remission, facilitating the relapse to the pathology. Hence, we investigated the long-lasting effects of chronic restraint stress (CRS) and its influence on the modifications induced by the exposure to a second hit on brain-derived neurotrophic factor (BDNF) signaling in the prefrontal cortex (PFC). We exposed adult male Sprague Dawley rats to 4 weeks of CRS, we left them undisturbed for the subsequent 3 weeks, and then we exposed animals to one hour of acute restraint stress (ARS). We found that CRS influenced the release of corticosterone induced by ARS and inhibited the ability of ARS to activate mature BDNF, its receptor Tropomyosin receptor kinase B (TRKB), and their associated intracellular cascades: the TRKB-PI3K-AKT), the MEK-MAPK/ERK, and the Phospholipase C γ (PLCγ) pathways, positively modulated by ARS in non-stressed animals. These results suggest that CRS induces protracted and detrimental consequences that interfere with the ability of PFC to cope with a challenging situation.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Corticosterone/metabolism , Prefrontal Cortex/metabolism , Restraint, Physical/psychology , Stress, Psychological/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Male , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Rats , Rats, Sprague-Dawley , Receptor, trkB/genetics , Receptor, trkB/metabolism , Signal Transduction , Stress, Psychological/etiology , Stress, Psychological/genetics
13.
Oxid Med Cell Longev ; 2020: 8363245, 2020.
Article in English | MEDLINE | ID: mdl-32832006

ABSTRACT

Neurodegenerative disease is an umbrella term for different conditions which primarily affect the neurons in the human brain. In the last century, significant research has been focused on mechanisms and risk factors relevant to the multifaceted etiopathogenesis of neurodegenerative diseases. Currently, neurodegenerative diseases are incurable, and the treatments available only control the symptoms or delay the progression of the disease. This review is aimed at characterizing the complex network of molecular mechanisms underpinning acute and chronic neurodegeneration, focusing on the disturbance in redox homeostasis, as a common mechanism behind five pivotal risk factors: aging, oxidative stress, inflammation, glycation, and vascular injury. Considering the complex multifactorial nature of neurodegenerative diseases, a preventive strategy able to simultaneously target multiple risk factors and disease mechanisms at an early stage is most likely to be effective to slow/halt the progression of neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases/therapy , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Humans , Middle Aged , Oxidation-Reduction , Risk Factors , Young Adult
14.
Psychopharmacology (Berl) ; 237(6): 1783-1793, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32296859

ABSTRACT

RATIONALE: Patients diagnosed with schizophrenia typically receive life-long treatments with antipsychotic drugs (APDs). However, the impact of chronic APDs treatment on neuroplastic mechanisms in the brain remains largely elusive. OBJECTIVE: Here, we focused on blonanserin, a second-generation antipsychotic (SGA) that acts as an antagonist at dopamine D2, D3, and serotonin 5-HT2A receptors, and represents an important tool for the treatment of schizophrenia. METHODS: We used rats to investigate the ability of chronic treatment blonanserin to modulate the activity of brain structures relevant for schizophrenia, under baseline conditions or in response to an acute forced swim session (FSS). We measured the expression of different immediate early genes (IEGs), including c-Fos, Arc/Arg 3.1, Zif268 and Npas4. RESULTS: Blonanserin per se produced limited changes in the expression of these genes under basal conditions, while, as expected, FSS produced a significant elevation of IEGs transcription in different brain regions. The response of blonanserin-treated rats to FSS show anatomical and gene-selective differences. Indeed, the upregulation of IEGs was greatly reduced in the striatum, a brain structure enriched in dopamine receptors, whereas the upregulation of some genes (Zif268, Npas4) was largely preserved in other regions, such as the prefrontal cortex and the ventral hippocampus. CONCLUSIONS: Taken together, our findings show that chronic exposure to blonanserin modulates selective IEGs with a specific anatomical profile. Moreover, the differential activation of specific brain regions under challenging conditions may contribute to specific clinical features of the drug.


Subject(s)
Antipsychotic Agents/administration & dosage , Brain/drug effects , Genes, Immediate-Early/drug effects , Piperazines/administration & dosage , Piperidines/administration & dosage , Stress, Psychological/drug therapy , Animals , Brain/physiology , Drug Administration Schedule , Genes, Immediate-Early/physiology , Male , Rats , Rats, Sprague-Dawley , Receptors, Dopamine/metabolism , Schizophrenia/drug therapy , Schizophrenia/genetics , Stress, Psychological/genetics , Stress, Psychological/psychology
15.
Pharmacol Ther ; 210: 107520, 2020 06.
Article in English | MEDLINE | ID: mdl-32165136

ABSTRACT

While neurotransmitter dysfunction represents a key component in mental illnesses, there is now a wide agreement for a central pathophysiological hub that includes hormones, neuroinflammation, redox mechanisms as well as oxidative stress. With respect to oxidation-reduction (redox) mechanisms, preclinical and clinical evidence suggests that an imbalance in the pro/anti-oxidative homeostasis toward the increased production of substances with oxidizing potential may contribute to the etiology and manifestation of different psychiatric disorders. The substantial and continous demand for energy renders the brain highly susceptible to disturbances in its energy supply, especially following exposure to stressful events, which may lead to overproduction of reactive oxygen and nitrogen species under conditions of perturbed antioxidant defenses. This will eventually induce different molecular alterations, including extensive protein and lipid peroxidation, increased blood-brain barrier permeability and neuroinflammation, which may contribute to the changes in brain function and morphology observed in mental illnesses. This view may also reconcile different key concepts for psychiatric disorders, such as the neurodevelopmental origin of these diseases, as well as the vulnerability of selective cellular populations that are critical for specific functional abnormalities. The possibility to pharmacologically modulate the redox system is receiving increasing interest as a novel therapeutic strategy to counteract the detrimental effects of the unbalance in brain oxidative mechanisms. This review will describe the main mechanisms and mediators of the redox system and will examine the alterations of oxidative stress found in animal models of psychiatric disorders as well as in patients suffering from mental illnesses, such as schizophrenia and major depressive disorder. In addition, it will discuss studies that examined the effects of psychotropic drugs, including antipsychotics and antidepressants, on the oxidative balance as well as studies that investigated the effectiveness of a direct modulation of oxidative mechanisms in counteracting the behavioral and functional alterations associated with psychiatric disorders, which supports the promising role of the redox system as a novel therapeutic target for the improved treatment of brain disorders.


Subject(s)
Antioxidants/therapeutic use , Central Nervous System Agents/therapeutic use , Central Nervous System/drug effects , Mental Disorders/drug therapy , Oxidative Stress/drug effects , Animals , Central Nervous System/metabolism , Central Nervous System/physiopathology , Humans , Mental Disorders/metabolism , Mental Disorders/physiopathology , Mental Disorders/psychology , Oxidation-Reduction
16.
Brain Behav Immun ; 82: 422-431, 2019 11.
Article in English | MEDLINE | ID: mdl-31525509

ABSTRACT

Vincristine (VCR) treatment is often associated to painful neuropathy. Its development is independent from antitumoral mechanism and involves neuroinflammation. We investigated the role of the chemokine prokineticin (PK)2 in a mouse model of VCR induced neuropathy using a PK-receptors (PK-R) antagonist to counteract its development. We also evaluated emotional like deficits in VCR mice. VCR (0,1 mg/kg) was i.p. injected in C57BL/6J male mice once a day for 14 consecutive days. Pain, anxiety and depressive like behaviors were assessed in animals. PK2, PK-Rs, cytokines, neuroinflammatory markers (CD68, CD11b, GFAP, TLR4) and ATF3 were evaluated in DRG, spinal cord, prefrontal cortex and hippocampus. The PK-Rs antagonist PC1, was s.c. injected (150 µg/kg) twice a day from day 7 (hypersensitivity state) until day 14. Its effect on pain and neuroinflammation was evaluated. VCR mice developed neuropathic pain but not mood alterations. After 7 days of VCR treatment we observed a neuroinflammatory condition in DRG with high levels of PK-Rs, TLR4, CD68, ATF3 and IL-1ß without relevant alterations in spinal cord. At day 14, an upregulation of PK system and a marked neuroinflammation was evident also in spinal cord. Moreover, at the same time, we observed initial alterations in supraspinal brain areas. PC1 treatment significantly counteracted neuropathic pain and blunted neuroinflammation.


Subject(s)
Gastrointestinal Hormones/metabolism , Neuralgia/chemically induced , Neuralgia/metabolism , Neuropeptides/metabolism , Vincristine/toxicity , Animals , Anxiety/chemically induced , Anxiety/metabolism , Behavior, Animal/drug effects , Cytokines/metabolism , Depression/chemically induced , Depression/metabolism , Disease Models, Animal , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Male , Mice , Mice, Inbred C57BL , Neuroimmunomodulation/drug effects , Random Allocation , Sciatic Nerve/drug effects , Sciatic Nerve/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism
17.
Front Mol Neurosci ; 12: 166, 2019.
Article in English | MEDLINE | ID: mdl-31379496

ABSTRACT

A growing body of evidence supports the close relationship between major depressive disorder (MDD), a severe psychiatric disease more common among women than men, and alterations of the immune/inflammatory system. However, despite the large number of studies aimed at understanding the molecular bases of this association, a lack of information exists on the potential cross-talk between systems known to be involved in depression and components of the inflammatory response, especially with respect to sex differences. Brain-derived neurotrophic factor (BDNF) is a neurotrophin with a well-established role in MDD etiopathology: it is altered in depressed patients as well as in animal models of the disease and its changes are restored by antidepressant drugs. Interestingly, this neurotrophin is also involved in the inflammatory response. Indeed, it can be secreted by microglia, the primary innate immune cells in the central nervous system whose functions may be in turn regulated by BDNF. With these premises, in this study, we investigated the reciprocal impact of BDNF and the immune system by evaluating the neuroinflammatory response in male and female BDNF-heterozygous mutant mice acutely treated with the cytokine-inducer lipopolysaccharide (LPS). Specifically, we assessed the potential onset of an LPS-induced sickness behavior as well as changes of inflammatory mediators in the mouse hippocampus and frontal cortex, with respect to both genotype and sex. We found that the increased inflammatory response induced by LPS in the brain of male mice was independent of the genotype, whereas in the female, it was restricted to the heterozygous mice with no changes in the wild-type group, suggestive of a role for BDNF in the sex-dependent effect of the inflammatory challenge. Considering the involvement of both BDNF and neuroinflammation in several psychiatric diseases and the diverse incidence of such pathologies in males and females, a deeper investigation of the mechanisms underlying their interaction may have a critical translational relevance.

18.
Curr Med Chem ; 26(20): 3685-3701, 2019.
Article in English | MEDLINE | ID: mdl-31333079

ABSTRACT

Population aging is accelerating rapidly worldwide, from 461 million people older than 65 years in 2004 to an estimated 2 billion people by 2050, leading to critical implications for the planning and delivery of health and social care. The most problematic expression of population aging is the clinical condition of frailty, which is a state of increased vulnerability that develops as a consequence of the accumulation of microscopic damages in many physiological systems that lead to a striking and disproportionate change in health state, even after an apparently small insult. Since little is known about the biology of frailty, an important perspective to understand this phenomenon is to establish how the alterations that physiologically occur during a condition of healthy aging may instead promote cumulative decline with subsequent depletion of homoeostatic reserve and increase the vulnerability also after minor stressor events. In this context, the present review aims to provide a description of the molecular mechanisms that, by having a critical impact on behavior and neuronal function in aging, might be relevant for the development of frailty. Moreover, since these biological systems are also involved in the coping strategies set in motion to respond to environmental challenges, we propose a role for lifestyle stress as an important player to drive frailty in aging.


Subject(s)
Aging/physiology , Frailty/physiopathology , Healthy Aging , Humans
19.
Front Pharmacol ; 10: 658, 2019.
Article in English | MEDLINE | ID: mdl-31244664

ABSTRACT

Alzheimer's disease (AD) is the most frequent type of dementia in older people. The complex nature of AD calls for the development of multitarget agents addressing key pathogenic processes. Donepezil, an acetylcholinesterase inhibitor, is a first-line acetylcholinesterase inhibitor used for the treatment of AD. Although several studies have demonstrated the symptomatic efficacy of donepezil treatment in AD patients, the possible effects of donepezil on the AD process are not yet known. In this study, a novel feruloyl-donepezil hybrid compound (PQM130) was synthesized and evaluated as a multitarget drug candidate against the neurotoxicity induced by Aß1-42 oligomer (AßO) injection in mice. Interestingly, PQM130 had already shown anti-inflammatory activity in different in vivo models and neuroprotective activity in human neuronal cells. The intracerebroventricular (i.c.v.) injection of AßO in mice caused the increase of memory impairment, oxidative stress, neurodegeneration, and neuroinflammation. Instead, PQM130 (0.5-1 mg/kg) treatment after the i.c.v. AßO injection reduced oxidative damage and neuroinflammation and induced cell survival and protein synthesis through the modulation of glycogen synthase kinase 3ß (GSK3ß) and extracellular signal-regulated kinases (ERK1/2). Moreover, PQM130 increased brain plasticity and protected mice against the decline in spatial cognition. Even more interesting is that PQM130 modulated different pathways compared to donepezil, and it is much more effective in counteracting AßO damage. Therefore, our findings highlighted that PQM130 is a potent multi-functional agent against AD and could act as a promising neuroprotective compound for anti-AD drug development.

20.
Adv Biosyst ; 3(7): e1800335, 2019 07.
Article in English | MEDLINE | ID: mdl-32648668

ABSTRACT

The neurovascular unit (NVU) is the most important biological barrier between vascular districts and central nervous system (CNS) parenchyma, which maintains brain homeostasis, protects the CNS from pathogens penetration, and mediates neuroimmune communication. T lymphocytes migration across the blood-brain barrier is heavily affected in different brain diseases, representing a major target for novel drug development. In vitro models of NVU could represent a primary tool to investigate the molecular events occurring at this interface. To move toward the establishment of personalized therapies, a patient-related NVU-model is set, incorporating human primary astrocytes integrated into a microfluidic platform. The model is morphologically and functionally characterized, proving to be an advantageous tool to investigate human T lymphocytes transmigration and thus the efficacy of potential novel drugs affecting this process.


Subject(s)
Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Microfluidic Analytical Techniques , Models, Cardiovascular , Models, Neurological , Astrocytes/cytology , Blood-Brain Barrier/cytology , Humans , Primary Cell Culture
SELECTION OF CITATIONS
SEARCH DETAIL
...