Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
BMC Mol Cell Biol ; 22(1): 45, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34521351

ABSTRACT

BACKGROUND: The crucial role of the major histocompatibility complex (MHC) for the immune response to infectious diseases is well-known, but no information is available on the 3D nuclear organization of this gene-dense region in immune cells, whereas nuclear architecture is known to play an essential role on genome function regulation. We analyzed the spatial arrangement of the three MHC regions (class I, III and II) in macrophages using 3D-FISH. Since this complex presents major differences in humans and pigs with, notably, the presence of the centromere between class III and class II regions in pigs, the analysis was implemented in both species to determine the impact of this organization on the 3D conformation of the MHC. The expression level of the three genes selected to represent each MHC region was assessed by quantitative real-time PCR. Resting and lipopolysaccharide (LPS)-activated states were investigated to ascertain whether a response to a pathogen modifies their expression level and their 3D organization. RESULTS: While the three MHC regions occupy an intermediate radial position in porcine macrophages, the class I region was clearly more peripheral in humans. The BAC center-to-center distances allowed us to propose a 3D nuclear organization of the MHC in each species. LPS/IFNγ activation induces a significant decompaction of the chromatin between class I and class III regions in pigs and between class I and class II regions in humans. We detected a strong overexpression of TNFα (class III region) in both species. Moreover, a single nucleus analysis revealed that the two alleles can have either the same or a different compaction pattern. In addition, macrophage activation leads to an increase in alleles that present a decompacted pattern in humans and pigs. CONCLUSIONS: The data presented demonstrate that: (i) the MHC harbors a different 3D organization in humans and pigs; (ii) LPS/IFNγ activation induces chromatin decompaction, but it is not the same area affected in the two species. These findings were supported by the application of an original computation method based on the geometrical distribution of the three target genes. Finally, the position of the centromere inside the swine MHC could influence chromatin reorganization during the activation process.


Subject(s)
Macrophages , Major Histocompatibility Complex , Animals , Cell Nucleus , Centromere , Humans , Lipopolysaccharides/pharmacology , Major Histocompatibility Complex/genetics , Swine
2.
Front Cell Dev Biol ; 9: 656795, 2021.
Article in English | MEDLINE | ID: mdl-34026755

ABSTRACT

The cytolethal distending toxin (CDT) is produced by several Gram-negative pathogenic bacteria. In addition to inflammation, experimental evidences are in favor of a protumoral role of CDT-harboring bacteria such as Escherichia coli, Campylobacter jejuni, or Helicobacter hepaticus. CDT may contribute to cell transformation in vitro and carcinogenesis in mice models, through the genotoxic action of CdtB catalytic subunit. Here, we investigate the mechanism of action by which CDT leads to genetic instability in human cell lines and colorectal organoids from healthy patients' biopsies. We demonstrate that CDT holotoxin induces a replicative stress dependent on CdtB. The slowing down of DNA replication occurs mainly in late S phase, resulting in the expression of fragile sites and important chromosomic aberrations. These DNA abnormalities induced after CDT treatment are responsible for anaphase bridge formation in mitosis and interphase DNA bridge between daughter cells in G1 phase. Moreover, CDT-genotoxic potential preferentially affects human cycling cells compared to quiescent cells. Finally, the toxin induces nuclear distension associated to DNA damage in proliferating cells of human colorectal organoids, resulting in decreased growth. Our findings thus identify CDT as a bacterial virulence factor targeting proliferating cells, such as human colorectal progenitors or stem cells, inducing replicative stress and genetic instability transmitted to daughter cells that may therefore contribute to carcinogenesis. As some CDT-carrying bacterial strains were detected in patients with colorectal cancer, targeting these bacteria could be a promising therapeutic strategy.

3.
BMC Biol ; 17(1): 108, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31884969

ABSTRACT

BACKGROUND: Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells). RESULTS: RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species. CONCLUSIONS: We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.


Subject(s)
Animals, Domestic/genetics , Chromatin/genetics , Molecular Sequence Annotation , Transcriptome , Animals , Cattle , Chickens , Goats , Phylogeny , Sus scrofa
4.
PLoS One ; 12(11): e0187617, 2017.
Article in English | MEDLINE | ID: mdl-29121641

ABSTRACT

Reciprocal translocations are the most frequently occurring constitutional structural rearrangements in mammalian genomes. In phenotypically normal pigs, an incidence of 1/200 is estimated for such rearrangements. Even if constitutional translocations do not necessarily induce defects and diseases, they are responsible for significant economic losses in domestic animals due to reproduction failures. Over the last 30 years, advances in molecular and cytogenetic technologies have led to major improvements in the resolution of the characterization of translocation events. Characterization of translocation breakpoints helps to decipher the mechanisms that lead to such rearrangements and the functions of the genes that are involved in the translocation. Here, we describe the fine characterization of a reciprocal translocation t(3;4) (p1.3;q1.5) detected in a pig line. The breakpoint was identified at the base-pair level using a positional cloning and chromosome walking strategy in somatic cell hybrids that were generated from an animal that carries this translocation. We show that this translocation occurs within the ADAMTSL4 gene and results in a loss of expression in homozygous carriers. In addition, by taking this translocation as a model, we used a whole-genome next-generation mate-pair sequencing approach on pooled individuals to evaluate this strategy for high-throughput screening of structural rearrangements.


Subject(s)
ADAMTS Proteins/genetics , Chromosome Mapping , Chromosomes, Mammalian/genetics , High-Throughput Nucleotide Sequencing , Models, Genetic , Translocation, Genetic , Animals , Swine
5.
BMC Cell Biol ; 17(1): 35, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27716032

ABSTRACT

BACKGROUND: To explore the relationship between spatial genome organization and gene expression in the interphase nucleus, we used a genomic imprinting model, which offers parental-specific gene expression. Using 3D FISH in porcine fetal liver cells, we compared the nuclear organization of the two parental alleles (expressed or not) of insulin-like growth factor 2 (IGF2), a paternally imprinted gene located on chromosome 2. We investigated whether its nuclear positioning favors specific locus associations. We also tested whether IGF2 is implicated in long-range chromatin trans-associations as previously shown in the mouse model species for its reciprocal imprinted gene H19. RESULTS: We focused on the 3D position of IGF2 alleles, with respect to their individual chromosome 2 territories. The paternally expressed allele was tagged with nascent RNA. There were no significant differences in the position of the two alleles (p = 0.06). To determine long-range chromatin trans-interactions, we chose 12 genes, some of which are known to be imprinted in mammalian model species and belong to a network of imprinted genes (i.e. SLC38A4, DLK1, MEG3, and ZAC1). We screened them and ABCG2, OSBP2, OSBPL1, RPL32, NF1, ZAR1, SEP15, GPC3 for associations with IGF2 in liver cells. All imprinted genes tested showed an association with IGF2. The DLK1/MEG3 locus showed the highest rate of colocalization. This gene association was confirmed by 3D FISH (in 20 % of the nuclei analyzed), revealing also the close proximity of chromosomes 2 and 7 (in 60 % of nuclei). Furthermore, our observations showed that the expressed paternal IGF2 allele is involved in this association. This IGF2-(DLK1/MEG3) association also occurred in a high percentage of fetal muscle cells (36 % of nuclei). Finally, we showed that nascent IGF2, DLK1 and MEG3 RNAs can associate in pairs or in a three-way combination. CONCLUSION: Our results show that trans-associations occur between three imprinted genes IGF2, DLK1 and MEG3 both in fetal liver and muscle cells. All three expressed alleles associated in muscle cells. Our findings suggest that the 3D nuclear organization is linked to the transcriptional state of these genes.


Subject(s)
Alleles , Cell Nucleus/metabolism , Fetus/cytology , Genomic Imprinting , Insulin-Like Growth Factor II/genetics , Membrane Proteins/genetics , RNA, Long Noncoding/genetics , Sus scrofa/embryology , Animals , Cell Count , Chromosomes, Mammalian/metabolism , DNA/genetics , Genetic Loci , In Situ Hybridization, Fluorescence , Insulin-Like Growth Factor II/metabolism , Liver/cytology , Liver/metabolism , Membrane Proteins/metabolism , Muscles/cytology , Muscles/metabolism , RNA Transport , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
PLoS One ; 8(10): e78005, 2013.
Article in English | MEDLINE | ID: mdl-24205066

ABSTRACT

In mammals, the non-random organization of the sperm nucleus supports an early function during embryonic development. Altering this organization may interfere with the zygote development and reduce fertility or prolificity. Thus, rare studies on sperm cells from infertile patients described an altered nuclear organization that may be a cause or a consequence of their respective pathologies. Thereby, chromosomal rearrangements and aneuploidy can be studied not only for their adverse effects on production of normal/balanced gametes at meiosis but also for their possible impact on sperm nuclear architecture and the epigenetic consequences of altered chromosome positioning. We decided to compare the global architecture of sperm nuclei from boars, either with a normal chromosome composition or with a Robertsonian translocation involving chromosomes 13 and 17. We hypothesized that the fusion between these chromosomes may change their spatial organization and we examined to what extend it could also modify the global sperm nuclear architecture. Analysis of telomeres, centromeres and gonosomes repartition does not support a global nuclear disorganization. But specific analysis of chromosomes 13 and 17 territories highlights an influence of chromosome 17 for the positioning of the fused chromosomes within the nucleus. We also observed a specific clustering of centromeres depending of the chromosome subtypes. Altogether our results showed that chromosome fusion does not significantly alter sperm nucleus architecture but suggest that centromere remodelling after chromosome fusion locally impacts chromosome positioning.


Subject(s)
Spermatozoa/metabolism , Translocation, Genetic/genetics , Animals , Chromosome Positioning/genetics , Infertility, Male/genetics , Infertility, Male/physiopathology , Male , Meiosis/genetics , Swine
7.
BMC Cell Biol ; 14: 30, 2013 Jun 26.
Article in English | MEDLINE | ID: mdl-23803152

ABSTRACT

BACKGROUND: While the essential role of 3D nuclear architecture on nuclear functions has been demonstrated for various cell types, information available for neutrophils, essential components of the immune system, remains limited. In this study, we analysed the spatial arrangements of telomeres which play a central role in cell fate. Our studies were carried out in swine, which is an excellent model organism for both biomedical research and agronomic applications. We isolated bacterial artificial chromosome (BAC)-containing subtelomeric p and q sequences specific to each porcine chromosome. This allowed us to study the behaviour of p and q telomeres of homologous chromosomes for seven pairs chosen for their difference in length and morphology. This was performed using 3D-FISH on structurally preserved neutrophils, and confocal microscopy. Resting and lipopolysaccharide (LPS)-activated states were investigated to ascertain whether a response to a pathogen aggression modifies this organization. RESULTS: The positions of the p and q telomeres relative to the nuclear outer border were determined in the two states. All p telomeres changed their position significantly during the activation process, although the effect was less pronounced for the q telomeres. The patterns of telomeric associations between homologs and their frequencies were analysed for 7 pairs of chromosomes. This analysis revealed that the distribution of pp, qq and pq associations differs significantly among the 7 chromosomes. This distribution does not fit with the theoretical distribution for each chromosome, suggesting that preferential associations occur between subtelomeres. CONCLUSIONS: The percentage of nuclei harbouring at least one telomeric association between homologs varies significantly among the chromosomes, the smallest metacentric chromosome SSC12, which is also the richest in gene-density, harbouring the highest value. The distribution of types of telomeric associations is highly dependent on the chromosomes and is not affected by the activation process. The frequencies of telomeric associations are also highly dependent on the type of association and the type of chromosome. Overall, the LPS-activation process induces only minor changes in these patterns of associations. When telomeric associations occur, the associations of p and q arms from the same chromosome are the most frequent, suggesting that "chromosome bending" occurs in neutrophils as previously observed in gametes.


Subject(s)
Cell Nucleus/pathology , Imaging, Three-Dimensional/methods , In Situ Hybridization, Fluorescence/methods , Lipopolysaccharides/pharmacology , Neutrophils/pathology , Telomere/drug effects , Telomere/ultrastructure , Animals , Chromosomes/ultrastructure , Chromosomes, Artificial, Bacterial/ultrastructure , DNA Probes , Microscopy, Confocal/methods , Models, Animal , Swine
8.
Chromosoma ; 120(5): 501-20, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21695480

ABSTRACT

Changes in the nuclear positioning of specific genes, depending on their expression status, have been observed in a large diversity of physiological processes. However, gene position is poorly documented for immune cells which have been subjected to activation following bacterial infection. Using a pig model, we focused our study on monocyte-derived macrophages and neutrophils, as they are the first lines of defence against pathogens. We examined whether changes in gene expression due to LPS activation imply that genes have repositioned in the nuclear space. We first performed a transcriptomic analysis to identify the differentially expressed genes and then analysed the networks involved during lypopolysaccharide/interferon gamma activation in monocyte-derived macrophages. This allowed us to select four up-regulated (IL1ß, IL8, CXCL10 and TNFα) and four down-regulated (VIM, LGALS3, TUBA3 and IGF2) genes. Their expression statuses were verified by quantitative real-time RT-PCR before studying their behaviour in the nuclear space during macrophage activation by means of 3D fluorescence in situ hybridization. No global correlation was found between gene activity and radial positioning. Only TNFα belonging to the highly transcribed MHC region on chromosome 7 became more peripherally localized in relation to the less decondensed state of its chromosome territory (CT) in activated macrophages. The analysis of gene positioning towards their CT revealed that IL8 increases significantly its tendency to be outside its CT during the activation process. In addition, the gene to CT edge distances increase for the three up-regulated genes (IL8, CXCL10 and TNFα) among the four analysed. Contrarily, the four down-regulated genes did not change their position. The analysis of gene behaviour towards their CT was extended to include neutrophils for three (TNFα, IL8 and IL1ß) up- and two (IGF2 and TUBA3) down-regulated genes, and similar results were obtained. The analysis was completed by studying the four up-regulated genes in fibroblasts, not involved in immune response. Our data suggest that relocation in the nuclear space of genes that are differentially expressed in activated immune cells is gene and cell type specific but also closely linked to the entire up-regulation status of their chromosomal regions.


Subject(s)
Cell Nucleus/genetics , Gene Expression Profiling , Lipopolysaccharides/immunology , Macrophages/immunology , Neutrophils/immunology , Swine/genetics , Animals , Cell Nucleus/immunology , Cells, Cultured , Cytokines/genetics , Cytokines/immunology , Female , Gene Expression Regulation , Macrophage Activation , Neutrophil Activation , Swine/immunology
9.
Chromosome Res ; 17(7): 847-62, 2009.
Article in English | MEDLINE | ID: mdl-19763853

ABSTRACT

Neutrophils are essential components of the innate immune system due to their ability to kill and phagocytose invading microbes. They possess a lobulated nucleus and are capable of extensive and complex changes in response to bacterial stimulation. The aim of our study was to investigate whether the 3D nuclear organization of porcine neutrophils was modified upon stimulation. The organization of centromeres, telomeres, and chromosome territories (chromosomes 2, 3, 7, 8, 12, 13, and 17) was studied on structurally preserved nuclei using 3D fluorescence in situ hybridization, confocal microscopy, and image analysis. By differential labeling of centromeres of acrocentric and metacentric/submetacentric chromosomes, we showed that centromeres associated to form chromocenters but did so preferentially between chromosomes with the same morphology. Upon activation, some of these chromocenters dispersed. Telomeres were also found to form clusters, but their number remained unchanged in lipopolysaccharide-stimulated neutrophils. The analysis of the position of chromocenters and telomere clusters showed a more internal location of the latter compared to the former. The analysis of chromosome territories revealed that homologs were distributed randomly among lobes whatever the cell's status. The volume of these territories was not proportional to chromosome length, and some chromosomes (chr 3, 12, 13, and 17) were more prone to decondensation when neutrophils were stimulated. Thus, our study demonstrated that activation of neutrophils resulted in several modifications of their nuclear architecture: a decrease in the number of non-acrocentric chromocenters and the decondensation of several chromosomes.


Subject(s)
Cell Nucleus/immunology , Lipopolysaccharides/immunology , Neutrophils/cytology , Neutrophils/immunology , Swine/immunology , Animals , Female , Imaging, Three-Dimensional , In Situ Hybridization, Fluorescence , Microscopy, Confocal
10.
Dev Comp Immunol ; 31(7): 738-47, 2007.
Article in English | MEDLINE | ID: mdl-17169425

ABSTRACT

CD14 is a membrane-associated glycosylphosphatidylinositol (GPI)-anchored protein that binds lipopolysaccharide (LPS) of Gram-negative bacteria and enables LPS-dependent responses in a variety of cells. In this study a cDNA containing the porcine CD14 coding sequence has been cloned and its complete sequence determined. The amino acid sequence deduced from pig CD14 cDNA encodes a 373 amino acid polypeptide that exhibits 75%, 72%, 69%, 66%, 57% and 56% similarity to CD14 from cow, horse, human, rabbit, mouse and rat, respectively. Structural analysis showed that the porcine CD14 is a membrane glycoprotein with a GPI-anchor site and an extracellular domain containing 11 leucine-rich repeats. In addition, the LPS-binding regions identified in the human CD14 are highly conserved in the N-terminal domain of the porcine sequence. Fluorescence in situ hybridization was used to locate the CD14 gene on the pig chromosome 2, band q28. Expression analysis revealed that porcine CD14 transcripts were detected in all tissues and cells examined, suggesting that the expression of porcine CD14 gene is not restricted to myeloid cell lineage. Finally, we report that LPS stimulation significantly up-regulated CD14 gene expression in porcine alveolar macrophages.


Subject(s)
Lipopolysaccharide Receptors/genetics , Swine/genetics , Amino Acid Sequence , Animals , Base Sequence , Chromosome Mapping , Cloning, Molecular , DNA, Complementary/genetics , In Situ Hybridization, Fluorescence , Lipopolysaccharide Receptors/biosynthesis , Lipopolysaccharide Receptors/immunology , Lipopolysaccharides/immunology , Macrophages, Alveolar/immunology , Molecular Sequence Data , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sequence Alignment , Sequence Analysis, DNA , Swine/immunology
11.
Genomics ; 88(4): 504-12, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16765019

ABSTRACT

This study reports a high-resolution comparative map between human chromosomes and porcine chromosomes 2 (SSC2) and 16 (SSC16), pointing out new homologies and evolutionary breakpoints. SSC2 is of particular interest because of the presence of several important QTLs. Among 226 porcine ESTs selected according to their expected localization, 151 were RH mapped and ordered on SSC2. This study confirmed the extensive conservation between SSC2 and HSA11 and HSA19 and refined the homology with HSA5 (three blocks defined). Furthermore the SSC2q pericentromeric region was shown to be homologous to another human chromosome (HSA1). A complex organization of these syntenies was demonstrated on SSC2q. Our strategy led us to improve also the SSC16 RH map by adding 45 markers. Two-color fluorescence in situ hybridization of markers representative of each synteny confirmed block order. Finally, 29 breakpoints were identified in both species, and porcine BACs containing two breakpoints were isolated.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Mammalian/genetics , Swine/genetics , Animals , Biological Evolution , Chromosome Breakage , Chromosomes, Artificial, Bacterial , Chromosomes, Human , Expressed Sequence Tags , Genetic Markers , Genomics/methods , Humans , Hybrid Cells , In Situ Hybridization, Fluorescence
12.
Reprod Biol Endocrinol ; 4: 12, 2006 Mar 21.
Article in English | MEDLINE | ID: mdl-16551357

ABSTRACT

BACKGROUND: Zygote arrest 1 (ZAR1) is one of the few known oocyte-specific maternal-effect genes essential for the beginning of embryo development discovered in mice. This gene is evolutionary conserved in vertebrates and ZAR1 protein is characterized by the presence of atypical plant homeobox zing finger domain, suggesting its role in transcription regulation. This work was aimed at the study of this gene, which could be one of the key regulators of successful preimplantation development of domestic animals, in pig and cattle, as compared with human. METHODS: Screenings of somatic cell hybrid panels and in silico research were performed to characterize ZAR1 chromosome localization and sequences. Rapid amplification of cDNA ends was used to obtain full-length cDNAs. Spatio-temporal mRNA expression patterns were studied using Northern blot, reverse transcription coupled to polymerase chain reaction and in situ hybridization. RESULTS: We demonstrated that ZAR1 is a single copy gene, positioned on chromosome 8 in pig and 6 in cattle, and several variants of correspondent cDNA were cloned from oocytes. Sequence analysis of ZAR1 cDNAs evidenced numerous short inverted repeats within the coding sequences and putative Pumilio-binding and embryo-deadenylation elements within the 3'-untranslated regions, indicating the potential regulation ways. We showed that ZAR1 expressed exclusively in oocytes in pig ovary, persisted during first cleavages in embryos developed in vivo and declined sharply in morulae and blastocysts. ZAR1 mRNA was also detected in testis, and, at lower level, in hypothalamus and pituitary in both species. For the first time, ZAR1 was localized in testicular germ cells, notably in round spermatids. In addition, in pig, cattle and human only shorter ZAR1 transcript variants resulting from alternative splicing were found in testis as compared to oocyte. CONCLUSION: Our data suggest that in addition to its role in early embryo development highlighted by expression pattern of full-length transcript in oocytes and early embryos, ZAR1 could also be implicated in the regulation of meiosis and post meiotic differentiation of male and female germ cells through expression of shorter splicing variants. Species conservation of ZAR1 expression and regulation underlines the central role of this gene in early reproductive processes.


Subject(s)
Egg Proteins/genetics , Genetic Variation , Germ Cells/metabolism , Homeodomain Proteins/genetics , Transcription, Genetic , 3' Untranslated Regions , Amino Acid Sequence , Animals , Base Sequence , Cattle , Chromosome Mapping , DNA, Complementary , Egg Proteins/metabolism , Embryo, Mammalian/metabolism , Embryonic Development , Female , Gene Dosage , Humans , In Situ Hybridization , Male , Molecular Sequence Data , Oocytes/metabolism , Ovary/metabolism , RNA, Messenger/metabolism , Spermatids/metabolism , Swine , Testis/metabolism , Tissue Distribution
13.
Genomics ; 86(4): 405-13, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16111857

ABSTRACT

We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC17 is of particular interest in studies of chromosomal organization due to the presence of QTLs that affect meat quality and carcass composition. A total of 158 pig ESTs available in databases or developed by the Sino-Danish Pig Genome Sequencing Consortium were mapped using the INRA-University of Minnesota porcine radiation hybrid panel. The high-resolution map was further anchored by fluorescence in situ hybridization. This study confirmed the extensive conservation between SSC17 and HSA20 and enabled the gene order to be determined. The homology of the SSC17 pericentromeric region was extended to other human chromosomes (HSA4, HSA8) and the chromosomal breakpoint boundaries were accurately defined. In total 15 breakpoints were identified.


Subject(s)
Chromosomes, Human, Pair 20 , Chromosomes, Human, Pair 4 , Chromosomes, Human, Pair 8 , Chromosomes, Mammalian , Swine/genetics , Synteny/genetics , Animals , Chromosome Breakage/genetics , Chromosomes, Artificial, Bacterial/genetics , Cytogenetics , Expressed Sequence Tags , Genetic Markers , Genome, Human , Humans , In Situ Hybridization, Fluorescence , Radiation Hybrid Mapping
14.
FEMS Microbiol Lett ; 245(2): 263-9, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15837381

ABSTRACT

Mutagenesis with TnphoA has been widely used in many bacteria. Here, we report the excision and secondary transposition of this transposon in three non-motile (fliC, fliF and motB) mutants of Salmonella enterica serovar Enteritidis (S. Enteritidis). Isolation of motile revertants showed that they were kanamycin resistant and conserved a copy of TnphoA in their genome in an insertion site different from the initial one. They also expressed an intact flagella. Characterization of the motile revertant derived from the fliC mutant showed that TnphoA excised precisely from the fliC gene, resulting in an equivalent amount of FliC secreted protein in the revertant compared to that of the wild-type strain. These results show that TnphoA mutants should be used with care and underline the value of using transposon derivatives lacking the transposase gene.


Subject(s)
DNA Transposable Elements , Recombination, Genetic , Salmonella enteritidis/genetics , Alkaline Phosphatase , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Flagella/physiology , Flagella/ultrastructure , Flagellin/genetics , Membrane Proteins/genetics , Membrane Proteins/physiology , Movement , Salmonella enteritidis/physiology
15.
Res Microbiol ; 155(7): 543-52, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15313254

ABSTRACT

Poultry products contaminated with Salmonella enterica serovar Enteritidis are a major cause of foodborne disease in industrialized countries. Knowledge of how poultry is colonised is essential for reducing contamination of these products. We have characterized the bacterial yfg-eng locus involved in chicken colonisation. Its sequencing revealed four open reading frames (ORF), yfgM, yfgL, engA and yfgJ, all transcribed in the same orientation. An yfgL mutant of S. Enteritidis colonised the caeca (P < 0.05) and the spleens (P < 0.01) of one-day-old chicks subnormally 2 and 5 days after oral inoculation. This lower virulence was correlated with reduced secretion of the SPI-1 and flagellar proteins in the yfgL mutant compared to the wild-type strain. Consistent with this, the S. Enteritidis yfgL mutant was less motile than the wild type and fewer invaded enterocytes (P < 0.05) and avian HD11 macrophages (P < 0.001). All these defects could be partially overcome by inserting the yfg-eng locus into the mutant on a recombinant plasmid.


Subject(s)
Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Poultry Diseases/microbiology , Salmonella enterica/pathogenicity , Virulence/genetics , Animals , Chickens , Fimbriae Proteins/physiology , Genes, Bacterial , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Spleen/microbiology , Spleen/pathology
16.
Vet Immunol Immunopathol ; 96(1-2): 43-52, 2003 Nov 15.
Article in English | MEDLINE | ID: mdl-14522133

ABSTRACT

Salmonella frequently causes human foodborne infections. Contaminated products from poultry infected with Salmonella enteritidis are mainly involved. This serovar is able to colonize the gastrointestinal tract and generally produces a chronic asymptomatic carrier state in poultry, except in very young birds. We have developed a model of S. enteritidis carriage in chicks and found that four chicken lines, B13, L2, PA12 and Y11 differ in their cecal colonization by S. enteritidis, whereas their systemic organs are similarly infected. We have monitored the serum and gut antibody responses of these four lines to S. enteritidis for 9 weeks post inoculation (pi). We confirm that S. enteritidis infected the spleens of the four chicken lines similarly, and that it often colonized the ceca at levels significantly higher in B13 and L2 chicks than those of the PA12 and Y11 chicks. The serum IgM and IgG antibody responses were high and the serum IgA antibody responses low. In contrast, the intestinal secretions contained mostly IgA antibodies. The serum IgM antibody values of the four chicken lines were similar. However, the B13 and L2 chicks often had significantly higher serum IgG and IgA antibody responses than PA12 and Y11 chicks. Only the B13 and L2 chicks showed high, persistent levels of IgA antibody in intestinal secretions. These results suggest that most antibody responses are related to cecal colonization by S. enteritidis. They also indicate that factors other than the antibody levels are involved in the control of this colonization.


Subject(s)
Antibodies, Bacterial/biosynthesis , Chickens , Intestinal Diseases/veterinary , Poultry Diseases/microbiology , Salmonella Infections, Animal/immunology , Salmonella enteritidis/immunology , Animals , Antibodies, Bacterial/blood , Cecum/immunology , Cecum/microbiology , Colony Count, Microbial/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Intestinal Diseases/immunology , Intestinal Diseases/microbiology , Poultry Diseases/genetics , Poultry Diseases/immunology , Salmonella Infections, Animal/blood , Salmonella Infections, Animal/microbiology , Salmonella enteritidis/growth & development , Spleen/immunology , Spleen/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...