Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(24): 6355-6362, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38857301

ABSTRACT

Strain engineering represents a pivotal approach to tailoring the optoelectronic properties of two-dimensional (2D) materials. However, typical bending experiments often encounter challenges, such as layer slippage and inefficient transfer of strain from the substrate to the 2D material, hindering the realization of their full potential. In our study, using molybdenum disulfide (MoS2) as a model 2D material, we have demonstrated that layers obtained through gold-assisted exfoliation on flexible polycarbonate substrates can achieve high-efficient strain transfer while also mitigating slippage effects, owing to the strong interfacial interaction established between MoS2 and gold. We employ differential reflectance and Raman spectroscopy for monitoring strain changes. We successfully applied uniaxial strains of up to 3% to trilayer MoS2, resulting in a notable energy shift of 168 meV. These values are comparable only to those obtained in encapsulated samples with organic polymers.

2.
ACS Appl Mater Interfaces ; 15(39): 46171-46180, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37738025

ABSTRACT

The modification of the surface properties of graphene with polymers provides a method for expanding its scope into new applications as a hybrid material. Unfortunately, the chemical inertness of graphene hinders the covalent functionalization required to build them up. Developing new strategies to enhance the graphene chemical activity for efficient and stable functionalization, while preserving its electronic properties, is a major challenge. We here devise a covalent functionalization method that is clean, reproducible, scalable, and technologically relevant for the synthesis of a large-scale, substrate-supported graphene-polymer hybrid material. In a first step, hydrogen-assisted plasma activation of p-aminophenol (p-AP) linker molecules produces their stable and covalent attachment to large-area graphene. Second, an in situ radical polymerization reaction of 2-hydroxyethyl acrylate (HEA) is carried out on the functionalized surface, leading to a graphene-polymer hybrid functional material. The functionalization with a hydrophilic and soft polymer modifies the hydrophobicity of graphene and might enhance its biocompatibility. We have characterized these hybrid materials by atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS) and Raman spectroscopy and studied their electrical response, confirming that the graphene/p-AP/PHEA architecture is anchored covalently by the sp3 hybridization and controlled polymerization reaction on graphene, retaining its suitable electronic properties. Among all the possibilities, we assess the proof of concept of this graphene-based hybrid platform as a humidity sensor. An enhanced sensitivity is obtained in comparison with pristine graphene and related materials. This functional nanoarchitecture and the two-step strategy open up future potential applications in sensors, biomaterials, or biotechnology fields.

3.
Adv Mater ; 35(33): e2211176, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37046341

ABSTRACT

Generation, manipulation, and sensing of magnetic domain walls are cornerstones in the design of efficient spintronic devices. Half-metals are amenable for this purpose as large low field magnetoresistance signals can be expected from spin accumulation at spin textures. Among half metals, La1- x Srx MnO3 (LSMO) manganites are considered as promising candidates for their robust half-metallic ground state, Curie temperature above room temperature (Tc = 360 K, for x = 1/3), and chemical stability. Yet domain wall magnetoresistance is poorly understood, with large discrepancies in the reported values and conflicting interpretation of experimental data due to the entanglement of various source of magnetoresistance, namely, spin accumulation, anisotropic magnetoresistance, and colossal magnetoresistance. In this work, the domain wall magnetoresistance is measured in LSMO cross-shape nanowires with single-domain walls nucleated across the current path. Magnetoresistance values above 10% are found to be originating at the spin accumulation caused by the mistracking effect of the spin texture of the domain wall by the conduction electrons. Fundamentally, this result shows the importance on non-adiabatic processes at spin textures despite the strong Hund coupling to the localized t2g electrons of the manganite. These large magnetoresistance values are high enough for encoding and reading magnetic bits in future oxide spintronic sensors.

4.
Nano Lett ; 22(18): 7457-7466, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36108061

ABSTRACT

We demonstrate the fabrication of field-effect transistors based on single-layer MoS2 and a thin layer of BaTiO3 (BTO) dielectric, isolated from its parent epitaxial template substrate. Thin BTO provides an ultrahigh-κ gate dielectric effectively screening Coulomb scattering centers. These devices show mobilities substantially larger than those obtained with standard SiO2 dielectrics and comparable with values obtained with hexagonal boron nitride, a dielectric employed for fabrication of high-performance two-dimensional (2D) based devices. Moreover, the ferroelectric character of BTO induces a robust hysteresis of the current vs gate voltage characteristics, attributed to its polarization switching. This hysteresis is strongly suppressed when the device is warmed up above the tetragonal-to-cubic transition temperature of BTO that leads to a ferroelectric-to-paraelectric transition. This hysteretic behavior is attractive for applications in memory storage devices. Our results open the door to the integration of a large family of complex oxides exhibiting strongly correlated physics in 2D-based devices.

5.
Nanomaterials (Basel) ; 12(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35269292

ABSTRACT

In this work, we demonstrate the use of electrical impedance spectroscopy (EIS) for the disentanglement of several dielectric contributions in encapsulated single graphene layers. The dielectric data strongly vary qualitatively with the nominal graphene resistance. In the case of sufficiently low resistance of the graphene layers, the dielectric spectra are dominated by inductive contributions, which allow for disentanglement of the electrode/graphene interface resistance from the intrinsic graphene resistance by the application of an adequate equivalent circuit model. Higher resistance of the graphene layers leads to predominantly capacitive dielectric contributions, and the deconvolution is not feasible due to the experimental high frequency limit of the EIS technique.

6.
Nat Commun ; 12(1): 4668, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344878

ABSTRACT

Bound states in superconductors are expected to exhibit a spatially resolved electron-hole asymmetry which is the hallmark of their quantum nature. This asymmetry manifests as oscillations at the Fermi wavelength, which is usually tiny and thus washed out by thermal broadening or by scattering at defects. Here we demonstrate theoretically and confirm experimentally that, when coupled to magnetic impurities, bound states in a vortex core exhibit an emergent axial electron-hole asymmetry on a much longer scale, set by the coherence length. We study vortices in 2H-NbSe2 and in 2H-NbSe1.8S0.2 with magnetic impurities, characterizing these with detailed Hubbard-corrected density functional calculations. We find that the induced electron-hole imbalance depends on the band character of the superconducting material. Our results show that coupling between quantum bound states in superconductors is remarkably robust and has a strong influence in tunneling measurements.

7.
Mater Adv ; 2(10): 3274-3281, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-34124682

ABSTRACT

Paper has the potential to dramatically reduce the cost of electronic components. In fact, paper is 10 000 times cheaper than crystalline silicon, motivating the research to integrate electronic materials on paper substrates. Among the different electronic materials, van der Waals materials are attracting the interest of the scientific community working on paper-based electronics because of the combination of high electrical performance and mechanical flexibility. Up to now, different methods have been developed to pattern conducting, semiconducting and insulating van der Waals materials on paper but the integration of superconductors remains elusive. Here, the deposition of NbSe2, an illustrative van der Waals superconductor, on standard copy paper is demonstrated. The deposited NbSe2 films on paper display superconducting properties (e.g. observation of Meissner effect and resistance drop to zero-resistance state when cooled down below its critical temperature) similar to those of bulk NbSe2.

8.
J Phys Condens Matter ; 33(14)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33445159

ABSTRACT

The magnetoresistance (MR) of iron pnictide superconductors is often dominated by electron-electron correlations and deviates from theH2or saturating behaviors expected for uncorrelated metals. Contrary to similar Fe-based pnictide systems, the superconductor LaRu2P2(Tc= 4 K) shows no enhancement of electron-electron correlations. Here we report a non-saturating MR deviating from theH2or saturating behaviors in LaRu2P2. We present results in single crystals of LaRu2P2, where we observe a MR followingH1.3up to 22 T. We discuss our result by comparing the bandstructure of LaRu2P2with that of Fe based pnictide superconductors. The different orbital structures of Fe and Ru leads to a 3D Fermi surface with negligible bandwidth renormalization in LaRu2P2, that contains a large open sheet over the whole Brillouin zone. We show that the large MR in LaRu2P2is unrelated to the one obtained in materials with strong electron-electron correlations and that it is compatible instead with conduction due to open orbits on the rather complex Fermi surface structure of LaRu2P2.

9.
Phys Chem Chem Phys ; 22(20): 11625-11636, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32405632

ABSTRACT

Magnetoimpedance spectroscopy was carried out on phase-separated La0.5Ca0.5MnO3 polycrystalline manganites. The La0.5Ca0.5MnO3 powder was synthesized following an adapted sol-gel route. Structural and magnetic data showed the signs of phase coexistence of ferromagnetic (FM) Pnma and charge-ordered antiferromagnetic (CO-AFM) P21/m phases. Magnetization vs. temperature (M vs. T) measurements revealed several magnetic transitions from the high temperature paramagnetic (PM) to an FM phase upon cooling (PM-FM) at ≈240 K, FM-AFM (≈170 K) and AFM-FM (≈100 K). Magnetic field (H)-dependent impedance spectroscopy data were collected from sintered pellets and fitted with an equivalent circuit model to separately analyze the different dielectric contributions from the grain boundary (GB) and the grain interior bulk areas. This allowed separating the GB and bulk magnetoresistance (MR), which was shown to amount to a maximum of ≈80% for both GB and bulk at H = 10 T near the metal-insulator transition (MIT) at ≈100 K. The GB resistance was found to be larger than the bulk resistance by a factor of ≈3, which implies that the direct current (DC) resistance and DC MR are dominated by contributions from the GBs. The magnetocapacitance (MC) effects detected were all found to be small below ≈3%, including in the presence of a CO phase.

10.
Materials (Basel) ; 13(10)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429266

ABSTRACT

We fabricated large-area atomically thin MoS2 layers through the direct transformation of crystalline molybdenum trioxide (MoO3) by sulfurization at relatively low temperatures. The obtained MoS2 sheets are polycrystalline (~10-20 nm single-crystal domain size) with areas of up to 300 × 300 µm2, 2-4 layers in thickness and show a marked p-type behavior. The synthesized films are characterized by a combination of complementary techniques: Raman spectroscopy, X-ray diffraction, transmission electron microscopy and electronic transport measurements.

11.
ACS Omega ; 4(2): 3287-3297, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-31008418

ABSTRACT

Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multitechnique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed.

12.
Nat Commun ; 8: 15306, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28480884

ABSTRACT

Graphene functionalization with organics is expected to be an important step for the development of graphene-based materials with tailored electronic properties. However, its high chemical inertness makes difficult a controlled and selective covalent functionalization, and most of the works performed up to the date report electrostatic molecular adsorption or unruly functionalization. We show hereafter a mechanism for promoting highly specific covalent bonding of any amino-terminated molecule and a description of the operating processes. We show, by different experimental techniques and theoretical methods, that the excess of charge at carbon dangling-bonds formed on single-atomic vacancies at the graphene surface induces enhanced reactivity towards a selective oxidation of the amino group and subsequent integration of the nitrogen within the graphene network. Remarkably, functionalized surfaces retain the electronic properties of pristine graphene. This study opens the door for development of graphene-based interfaces, as nano-bio-hybrid composites, fabrication of dielectrics, plasmonics or spintronics.

13.
Nat Nanotechnol ; 12(7): 655-662, 2017 07.
Article in English | MEDLINE | ID: mdl-28396607

ABSTRACT

The peculiar features of domain walls observed in ferroelectrics make them promising active elements for next-generation non-volatile memories, logic gates and energy-harvesting devices. Although extensive research activity has been devoted recently to making full use of this technological potential, concrete realizations of working nanodevices exploiting these functional properties are yet to be demonstrated. Here, we fabricate a multiferroic tunnel junction based on ferromagnetic La0.7Sr0.3MnO3 electrodes separated by an ultrathin ferroelectric BaTiO3 tunnel barrier, where a head-to-head domain wall is constrained. An electron gas stabilized by oxygen vacancies is confined within the domain wall, displaying discrete quantum-well energy levels. These states assist resonant electron tunnelling processes across the barrier, leading to strong quantum oscillations of the electrical conductance.

14.
Angew Chem Int Ed Engl ; 56(16): 4438-4442, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28332738

ABSTRACT

Multiferroic materials exhibit two or more ferroic orders and have potential applications as multifunctional materials in the electronics industry. A coupling of ferroelectricity and ferromagnetism is hereby particularly promising. We show that the synthetic melanostibite mineral Mn2 FeSbO6 (R3‾ space group) with ilmenite-type structure exhibits cation off-centering that results in alternating modulated displacements, thus allowing antiferroelectricity to occur. Massive magnetoelectric coupling (MEC) and magnetocapacitance effect of up to 4000 % was detected at a record high temperature of 260 K. The multiferroic behavior is based on the imbalance of cationic displacements caused by a magnetostrictive mechanism, which sets up an unprecedented example to pave the way for the development of highly effective MEC devices operational at or near room temperature.

15.
Inorg Chem ; 54(22): 10890-900, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26513539

ABSTRACT

R2NiMnO6 (R = Tb, Ho, Er, Tm) perovskites have been prepared by soft-chemistry techniques followed by high oxygen-pressure treatments; they have been investigated by X-ray diffraction, neutron powder diffraction (NPD), and magnetic measurements. In all cases the crystal structure is defined in the monoclinic P21/n space group, with an almost complete order between Ni(2+) and Mn(4+) cations in the octahedral perovskite sublattice. The low temperature NPD data and the macroscopic magnetic measurements indicate that all the compounds are ferrimagnetic, with a net magnetic moment different from zero and a distinct alignment of Ni and Mn spins depending on the nature of the rare-earth cation. The magnetic structures are different from the one previously reported for La2NiMnO6, with a ferromagnetic structure involving Mn(4+) and Ni(2+) moments. This spin alignment can be rationalized taking into account the Goodenough-Kanamori rules. The magnetic ordering temperature (TCM) decreases abruptly as the size of the rare earth decreases, since TCM is mainly influenced by the superexchange interaction between Ni(2+) and Mn(4+) (Ni(2+)-O-Mn(4+) angle) and this angle decreases with the rare-earth size. The rare-earth magnetic moments participate in the magnetic structures immediately below TCM.

SELECTION OF CITATIONS
SEARCH DETAIL
...