Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 2847, 2024 02 03.
Article in English | MEDLINE | ID: mdl-38310171

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic, rare disease, characterized by the formation of multiple cysts that grow out of the renal tubules. Despite intensive attempts to develop new drugs or repurpose existing ones, there is currently no definitive cure for ADPKD. This is primarily due to the complex and variable pathogenesis of the disease and the lack of models that can faithfully reproduce the human phenotype. Therefore, the development of models that allow automated detection of cysts' growth directly on human kidney tissue is a crucial step in the search for efficient therapeutic solutions. Artificial Intelligence methods, and deep learning algorithms in particular, can provide powerful and effective solutions to such tasks, and indeed various architectures have been proposed in the literature in recent years. Here, we comparatively review state-of-the-art deep learning segmentation models, using as a testbed a set of sequential RGB immunofluorescence images from 4 in vitro experiments with 32 engineered polycystic kidney tubules. To gain a deeper understanding of the detection process, we implemented both pixel-wise and cyst-wise performance metrics to evaluate the algorithms. Overall, two models stand out as the best performing, namely UNet++ and UACANet: the latter uses a self-attention mechanism introducing some explainability aspects that can be further exploited in future developments, thus making it the most promising algorithm to build upon towards a more refined cyst-detection platform. UACANet model achieves a cyst-wise Intersection over Union of 0.83, 0.91 for Recall, and 0.92 for Precision when applied to detect large-size cysts. On all-size cysts, UACANet averages at 0.624 pixel-wise Intersection over Union. The code to reproduce all results is freely available in a public GitHub repository.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/pathology , Artificial Intelligence , Kidney/diagnostic imaging , Kidney/pathology , Kidney Tubules , Cysts/diagnostic imaging , Cysts/pathology
3.
Nanoscale ; 12(29): 15896-15904, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32697249

ABSTRACT

Recent studies on anatase TiO2 have demonstrated its capability of performing as an anode material for sodium-ion batteries (SIBs) even though, due to poor conductivity, realistic applications have not yet been foreseen. In order to try to address this issue, herein, we shall introduce a cost effective and facile route based on the co-precipitation method for the synthesis of Mo-doped anatase TiO2 nanoparticles with AlF3 surface coating. The electrochemical measurements demonstrate that the Mo-doped anatase TiO2 nanoparticles deliver an ∼40% enhanced reversible capacity compared to pristine TiO2 (139.8 vs. 100.7 mA h g-1 at 0.1 C after 50 cycles) due to an improved electronic/ionic conductivity. Furthermore, upon AlF3 coating, the overall system can deliver a much higher reversible capacity of 178.9 mA h g-1 (∼80% increase with respect to pristine TiO2) with good cycling stability and excellent rate capabilities of up to 10 C. The experimental results indicate that the AlF3 surface coating could indeed effectively reduce the solid electrolyte interfacial resistance, enhance the electrochemical reactivity at the surface/interface region, and lower the polarization during cycling. The improved performance achieved using a cost-effective fabrication approach makes the dually modified anatase TiO2 a promising anode material for high-performance SIBs.

4.
Nat Commun ; 8: 14643, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28393912

ABSTRACT

Recently, intensive efforts are dedicated to convert and store the solar energy in a single device. Herein, dye-synthesized solar cell technology is combined with lithium-ion materials to investigate light-assisted battery charging. In particular we report the direct photo-oxidation of lithium iron phosphate nanocrystals in the presence of a dye as a hybrid photo-cathode in a two-electrode system, with lithium metal as anode and lithium hexafluorophosphate in carbonate-based electrolyte; a configuration corresponding to lithium ion battery charging. Dye-sensitization generates electron-hole pairs with the holes aiding the delithiation of lithium iron phosphate at the cathode and electrons utilized in the formation of a solid electrolyte interface at the anode via oxygen reduction. Lithium iron phosphate acts effectively as a reversible redox agent for the regeneration of the dye. Our findings provide possibilities in advancing the design principles for photo-rechargeable lithium ion batteries.

5.
ACS Appl Mater Interfaces ; 8(6): 4069-75, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26799094

ABSTRACT

LiMnPO4 is an attractive cathode material for the next-generation high power Li-ion batteries, due to its high theoretical specific capacity (170 mA h g(-1)) and working voltage (4.1 V vs Li(+)/Li). However, two main drawbacks prevent the practical use of LiMnPO4: its low electronic conductivity and the limited lithium diffusion rate, which are responsible for the poor rate capability of the cathode. The electronic resistance is usually lowered by coating the particles with carbon, while the use of nanosize particles can alleviate the issues associated with poor ionic conductivity. It is therefore of primary importance to develop a synthetic route to LiMnPO4 nanocrystals (NCs) with controlled size and coated with a highly conductive carbon layer. We report here an effective surface etching process (using LiPF6) on colloidally synthesized LiMnPO4 NCs that makes the NCs dispersible in the aqueous glucose solution used as carbon source for the carbon coating step. Also, it is likely that the improved exposure of the NC surface to glucose facilitates the formation of a conductive carbon layer that is in intimate contact with the inorganic core, resulting in a high electronic conductivity of the electrode, as observed by us. The carbon coated etched LiMnPO4-based electrode exhibited a specific capacity of 118 mA h g(-1) at 1C, with a stable cycling performance and a capacity retention of 92% after 120 cycles at different C-rates. The delivered capacities were higher than those of electrodes based on not etched carbon coated NCs, which never exceeded 30 mA h g(-1). The rate capability here reported for the carbon coated etched LiMnPO4 nanocrystals represents an important result, taking into account that in the electrode formulation 80% wt is made of the active material and the adopted charge protocol is based on reasonable fast charge times.

6.
ACS Appl Mater Interfaces ; 7(45): 25139-46, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26492841

ABSTRACT

Carbon-doped TiO2-bronze nanowires were synthesized via a facile doping mechanism and were exploited as active material for Li-ion batteries. We demonstrate that both the wire geometry and the presence of carbon doping contribute to the high electrochemical performance of these materials. Direct carbon doping for example reduces the Li-ion diffusion length and improves the electrical conductivity of the wires, as demonstrated by cycling experiments, which evidenced remarkably higher capacities and superior rate capability over the undoped nanowires. The as-prepared carbon-doped nanowires, evaluated in lithium half-cells, exhibited lithium storage capacity of ∼306 mA h g(-1) (91% of the theoretical capacity) at the current rate of 0.1C as well as excellent discharge capacity of ∼160 mAh g(-1) even at the current rate of 10 C after 1000 charge/discharge cycles.

7.
Int J Mol Sci ; 15(5): 8122-37, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24815072

ABSTRACT

In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li-air cells.


Subject(s)
Electric Power Supplies , Ionic Liquids/chemistry , Electrodes , Electrolytes/chemistry , Hydrocarbons, Fluorinated/chemistry , Imides/chemistry , Lithium/chemistry , Pyrrolidines/chemistry
8.
J Phys Chem Lett ; 4(9): 1379-82, 2013 May 02.
Article in English | MEDLINE | ID: mdl-26282288

ABSTRACT

The use of ionic liquid (IL)-based electrolytes and porous carbonaceous cathodes is today one of the most promising strategies for the development of rechargeable Li/O2 batteries. Enhancing Li/O2 battery cyclability at high discharge rate is a key issue for automotive applications. O2 reduction at a meso-macroporous carbon electrode in N-butyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI):LiTFSI 9:1 is here investigated. The study demonstrates that oxygen electrode response in IL at high discharge currents is dominated by O2 mass transport in IL. A novel configuration of flow-Li/O2 battery that operates at high discharge rate is reported.

9.
Chemistry ; 18(50): 16203-13, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23090856

ABSTRACT

The development of a pseudorotaxane motif capable of performing unidirectional threading and dethreading processes under control of external stimuli is particularly important for the construction of processive linear motors based on rotaxanes and, at least in principle, it discloses the possibility to access to rotary motors based on catenanes. Here, we report a strategy to obtain the solvent-controlled unidirectional transit of a molecular axle through a molecular wheel. It is based on the use of appropriately designed molecular components, the essential feature of which is their non-symmetric structure. Specifically they are an axle containing a central electron-acceptor 4,4'-bipyridinium core functionalized with a hexanol chain at one side, and a stilbene unit connected through a C6 chain at the other side, and a heteroditopic tris(phenylureido)-calix[6]arene wheel. In apolar solvents the axle threads into the wheel from its upper rim and with the end carrying the OH group, giving an oriented pseudorotaxane structure. After a stoppering reaction, which replaces the small hydroxy group with a bulky diphenylacetyl moiety, and replacement of the apolar solvent with a polar one, dethreading occurs through the slippage of the stilbene unit from the lower rim of the wheel, that is, in the same direction of the threading process. The essential role played by the stilbene unit to achieve the unidirectional transit of the axle through the wheel, and to tune the dethreading rate by light is also demonstrated.


Subject(s)
Rotaxanes/chemistry , Solvents/chemistry , Stilbenes/chemistry , Light , Models, Molecular , Molecular Structure
10.
Chem Commun (Camb) ; 48(69): 8652-4, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22822489

ABSTRACT

Optical or electrochemical excitation of an Ir(III) cyclometalated complex bearing photochromic and acid-sensitive dithienylethene ligands generates phosphorescence emission that can be switched on/off by light and chemical stimulation.

11.
Chemphyschem ; 12(12): 2280-8, 2011 Aug 22.
Article in English | MEDLINE | ID: mdl-21698742

ABSTRACT

Two series of CdSe quantum dots (QDs) with different diameters are prepared, according to frequently used protocols of the same synthetic procedure. For each sample the photophysical properties and the potentials for the first reduction and oxidation processes in organic solution are determined. The band gap obtained from electrochemical experiments is compared with that determined from the absorption and luminescence spectra. While the optical band gap decreases upon increasing the nanocrystal diameter, as expected on the basis of quantum confinement, the redox potentials and the electrochemical band gap are not monotonously related to the QD size. For both series, the smallest and largest QDs are both easier to oxidize and reduce than mid-sized QDs. In fact, the latter samples exhibit very broad voltammetric profiles, which suggests that the heterogeneous electron-transfer processes from/to the electrode are kinetically hindered. Conversely, the electrochemical band gap for the smallest and largest particles of each series is somewhat smaller than the optical band gap. These results indicate that, while the optical band gap depends on the actual electron-hole recombination within the nanocrystal, and therefore follows the size dependence expected from the particle-in-a-box model, the electrochemical processes of these QDs are strongly affected by other factors, such as the presence of surface defects. The investigations suggest that the influence of these defects on the potential values is more important for the smallest and largest QDs of each series, as confirmed by the respective luminescence bands and quantum yields. An interpretation for the size-dependent evolution of the surface defects in these nanocrystals is proposed based on the mechanism of their formation and growth.


Subject(s)
Cadmium Compounds/chemistry , Electrochemistry/methods , Nanotechnology/methods , Quantum Dots , Selenium Compounds/chemistry , Electrodes , Luminescence , Oxidation-Reduction , Particle Size , Potentiometry , Quantum Theory , Solutions/chemistry , Spectrum Analysis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...