Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(29): 13785-13792, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38963419

ABSTRACT

The Cu(I)-catalyzed azide-alkyne cycloaddition reaction between (NBu4)2[V6O13((OCH2)3CCH2N3)2] and 3-ethynylpyridine led to the formation of products capable of forming poorly soluble coordination compounds with transition metal ions such as Cu(I) and Zn(II). The formation of these poorly soluble phases is an important feature that was used to determine the course of reactions, allowing the selective preparation of symmetric bis-pyridyltriazolyl and asymmetric monopyridyltriazolyl derivatives with relatively high yields and high substrate conversions. The asymmetric compound (NBu4)2[V6O13((OCH2)3CCH2-N3C2H-C5H4N)((OCH2)3CCH2N3)] (V6asym) was utilized in the subsequent "click" postfunctionalization reaction with 1,4-diethynylbenzene, resulting in a covalently bound V6asym-V6asym dimer. This dimeric compound was subjected to scanning probe microscopy studies on gold surfaces, which revealed no electronic coupling between the hexavanadate cores within the dimer upon potential-induced switching. This observation indicates that such dimers and higher-order oligomers composed of polyoxometalate-ligand-polyoxometalate bridges can be exploited as active capacitor/memristor units, relevant to increase the data storage capacity of standard memory devices with innovative molecular switching mechanisms.

2.
Adv Sci (Weinh) ; : e2401595, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868906

ABSTRACT

The 2-bit Lindqvist-type polyoxometalate (POM) [V6O13((OCH2)3CCH2N3)2]2- with a diamagnetic {V6O19} core and azide termini shows six fully oxidized VV centers in solution as well as the solid state, according to 51V NMR spectroscopy. Under UV irradiation, it exhibits reversible switching between its ground S0 state and the energetically higher lying states in acetonitrile and water solutions. TD-DFT calculations demonstrate that this process is mainly initialized by excitation from the S0 to S9 state. Pulse radiolysis transient absorption spectroscopy experiments with a solvated electron point out photochemically induced charge disproportionation of VV into VIV and electron communication between the POM molecules via their excited states. The existence of this unique POM-to-POM electron communication is also indicated by X-ray photoelectron spectroscopy (XPS) studies on gold-metalized silicon wafers (Au//SiO2//Si) under ambient conditions. The amount of reduced vanadium centers in the "confined" environment increases substantially after beam irradiation with soft X-rays compared to non-irradiated samples. The excited state of one POM anion seems to give rise to subsequent electron transfer from another POM anion. However, this reaction is prohibited as soon as the relaxed T1 state of the POM is reached.

3.
Dalton Trans ; 53(19): 8454-8462, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38686658

ABSTRACT

Transforming current complementary metal-oxide-semiconductor (CMOS) technology to fabricate memory chips and microprocessors into environmentally friendlier electronics requires the development of new approaches to resource- and energy-efficient electron transport and switching materials. Metal and multi-metal oxide layers play a key role in high-end technical applications. However, these layers are commonly produced through high-energy and high-temperature procedures. Herein, we demonstrate our first attempts to obtain stimuli-responsive mixed-metal oxide thin films from solution-processed molecular precursors under milder conditions. The molecular compounds of interest were prepared by one-pot reactions of a CoII carboxylate complex, triethylamine (Et3N), N-butyldiethanolamine (H2bda), and a hexanuclear complex [Ce6O4(OH)4(piv)12] (Hpiv = pivalic acid) or [Zr6O4(OH)4(ib)12(H2O)]·3Hib (Hib = isobutyric acid) in acetonitrile solution. The resulting charge-neutral, heterometallic coordination compounds display a ligand-supported pentanuclear {CeIV3CoIII2} core (in 1) and a dodecanuclear {ZrIV6CoII6} core (in 2), exhibiting thermal stability up to ca. 100 °C in air. Compound 2 was deposited and analyzed on Au(111) and SiO2/Si(100) surfaces to explore its potential as a single-molecule precursor for the preparation of atomically precise, complex mixed-metal oxide thin films. The adsorption characteristics of it demonstrate the ability to form stable agglomerates on the investigated surfaces.

4.
Chem Sci ; 15(12): 4202-4221, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516091

ABSTRACT

Bioorthogonal chemistry has enabled scientists to carry out controlled chemical processes in high yields in vivo while minimizing hazardous effects. Its extension to the field of polyoxometalates (POMs) could open up new possibilities and new applications in molecular electronics, sensing and catalysis, including inside living cells. However, this comes with many challenges that need to be addressed to effectively implement and exploit bioorthogonal reactions in the chemistry of POMs. In particular, how to protect POMs from the biological environment but make their reactivity selective towards specific bioorthogonal tags (and thereby reduce their toxicity), as well as which bioorthogonal chemistry protocols are suitable for POMs and how reactions can be carried out are questions that we are exploring herein. This perspective conceptualizes and discusses advances in the supramolecular chemistry of POMs, their click chemistry, and POM-based surface engineering to develop innovative bioorthogonal approaches tailored to POMs and to improve POM biological tolerance.

5.
Mater Horiz ; 11(8): 1838-1842, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38334459

ABSTRACT

Vanadium is a critical raw material. In the nearby future, it may, however, become one of the key elements of computer devices based on two-dimensional arrays of spin qubits for quantum information processing or charge- and resistance-based data memory cells for non-volatile in-memory and neuromorphic computing. The research and development (R&D) of vanadium-containing electronic materials and methods for their responsible fabrication underpins the transition to innovative hybrid semiconductors for energy- and resource-efficient memory and information processing technologies. The combination of standard and emerging solid-state semiconductors with stimuli-responsive oxo complexes of vanadium(IV,V) is envisioned to result in electronics with a new room-temperature device nanophysics, and the ability to modulate and control it at the sub-nanometer level. The development of exponential (Boolean) logics based on the oxovanadium-comprising circuitry and crossbar arrays of individual memristive cells for in-memory computing, the implementation of basic synaptic functions via dynamic electrical pulses for neuromorphic computing, and the readout and control of spin networks and interfaces for quantum computing are strategically important future areas of molecular chemistry and applied physics of vanadium.

6.
Nanoscale Horiz ; 9(2): 233-237, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38115762

ABSTRACT

We demonstrate the first formation of stable, multistate switchable monolayers of polyoxometalates (POMs), which can be electronically triggered to higher charged states with increased conductance in the current-voltage profile at room temperature. These responsive two-dimensional monolayers are based on a fully oxidised dodecavanadate cage (POV12) equipped with Dy(III)-doped phthalocyanine (Pc) macrocycles adopting the face-on orientation on highly oriented pyrolytic graphite (HOPG). The layers can be lithographically processed by the tip of a scanning tunnelling microscope (STM) to machine patterns with diameters ranging from 30 to 150 nm2.

7.
Chem Commun (Camb) ; 59(62): 9517-9520, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37455637

ABSTRACT

The covalent attachment of organogold(I) moieties to the Lindqvist-type polyoxovanadate results in a measurable charge re-distribution across the formed Au-{V6}-Au linkages. Scanning probe microscopy studies of these hybrid compounds on the Au(111) surface demonstrate the increase in the number of switching states with stepwise increase in molecular conductance, compared with unfunctionalised hexavanadates.

8.
Inorg Chem ; 62(9): 3761-3775, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36534941

ABSTRACT

A series of {V12}-nuclearity polyoxovanadate cages covalently functionalized with one or sandwiched by two phthalocyaninato (Pc) lanthanide (Ln) moieties via V-O-Ln bonds were prepared and fully characterized for paramagnetic Ln = SmIII-ErIII and diamagnetic Ln = LuIII, including YIII. The LnPc-functionalized {V12O32} cages with fully oxidized vanadium centers in the ground state were isolated as (nBu4N)3[HV12O32Cl(LnPc)] and (nBu4N)2[HV12O32Cl(LnPc)2] compounds. As corroborated by a combined experimental (EPR, DC and AC SQUID, laser photolysis transient absorption spectroscopy, and electrochemistry) and computational (DFT, MD, and model Hamiltonian approach) methods, the compounds feature intra- and intermolecular electron transfer that is responsible for a partial reduction at V(3d) centers from VV to VIV in the solid state and at high sample concentrations. The effects are generally Ln dependent and are clearly demonstrated for the (nBu4N)3[HV12O32Cl(LnPc)] representative with Ln = LuIII or DyIII. Intramolecular charge transfer takes place for Ln = LuIII and occurs from a Pc ligand via the Ln center to the {V12O32} core of the same molecule, whereas for Ln = DyIII, only intermolecular charge transfer is allowed, which is realized from Pc in one molecule to the {V12O32} core of another molecule usually via the nBu4N+ countercation. For all Ln but DyIII, two of these phenomena may be present in different proportions. Besides, it is demonstrated that (nBu4N)3[HV12O32Cl(DyPc)] is a field-induced single molecule magnet with a maximal relaxation time of the order 10-3 s. The obtained results open up the way to further exploration and fine-tuning of these three modular molecular nanocomposites regarding tailoring and control of their Ln-dependent charge-separated states (induced by intramolecular transfer) and relaxation dynamics as well as of electron hopping between molecules. This should enable us to realize ultra-sensitive polyoxometalate powered quasi-superconductors, sensors, and data storage/processing materials for quantum technologies and neuromorphic computing.

9.
Phys Chem Chem Phys ; 24(43): 26848-26852, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36317506

ABSTRACT

One of the striking characteristics of the tris(alkoxo)-ligated Lindqvist-type polyoxovanadates [VV6O13{(OCH2)3CR}2]2- in highest oxidation state in solution is the ease of their chemical post-functionalization via the R group. On surfaces it is their conductivity as a function of individual V(3d) redox states. In both cases, the structural stability of the fully-oxidized dianion is enabled by charge-balancing counterions. In this Article, we explore the charge stability and the charge distibution across the molecular Lindqvist-type hexavanadate structure regarding the R functionality (R = OC2H4N3, CH2N3, and O3C29H36N5) and the different type of countercations (Cat = K+, Li+, NH4+, H+, or Mg2+). We show that the hexavanadate core can accept in its vacant V(3d) orbitals at least four and, in some cases, up to nine additional electrons if the negative charge is offset by the corresponding cation(s), without electron leakage to the covalently attached R groups. Remarkably, the maximum number of accepted electrons strongly depends on the type of cation(s) and is independent on the type of the remote R group exploited herein. The (Cat)n[VV6O13{(OCH2)3CR}2] complexes exibit the structural integrity in all studied charged states. Our study demonstrates the importance of the countercations of multistate polyoxovanadate nanoswitches for the development of multi-charge based molecular memories and/or batteries.


Subject(s)
Electric Power Supplies , Electrons , Molecular Structure , Oxidation-Reduction , Cations
10.
Chemistry ; 27(60): 14899-14910, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34490947

ABSTRACT

The synthesis, structure, magnetic, and photophysical properties of two dinuclear, luminescent, mixed-ligand [CrIII 2 L(O2 CR)]3+ complexes (R=CH3 (1), Ph (2)) of a 24-membered binucleating hexa-aza-dithiophenolate macrocycle (L)2- are presented. X-ray crystallographic analysis reveals an edge-sharing bioctahedral N3 Cr(µ-SR)2 (µ1,3 -O2 CR)CrN3 core structure with µ1,3 -bridging carboxylate groups. A ferromagnetic superexchange interaction between the electron spins of the Cr3+ ions leads to a high-spin (S=3) ground state. The coupling constants (J=+24.2(1) cm-1 (1), +34.8(4) cm-1 (2), H=-2JS1 S2 ) are significantly larger than in related bis-µ-alkoxido-µ-carboxylato structures. DFT calculations performed on both complexes reproduce both the sign and strength of the exchange interactions found experimentally. Frozen methanol-dichloromethane 1 : 1 solutions of 1 and 2 luminesce at 750 nm when excited into the 4 LMCT state on the 4 A2 → 2 T1 (ν2 ) bands (λexc =405 nm). The absolute quantum yields (ΦL ) for 1 and 2 were found to be strongly temperature dependent. At 77 K in frozen MeOH/CH2 Cl2 glasses, ΦL =0.44±0.02 (for 1), ΦL =0.45±0.02 (for 2).

11.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 7): 703-707, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34513015

ABSTRACT

The one-dimensional coordination polymer (I) [Sr(ib)2(H2mda)] n (Hib = isobutyric acid, C4H8O2, and H2mda = N-methyldi-ethano-lamine, C5H13NO2), namely, catena-poly[[(N-methyldi-ethano-lamine-κ3 O,N,O')strontium(II)]-di-µ2-isobutyrato-κ3 O,O':O;κ3 O:O,O'], was prepared by the one-pot aerobic reaction of [Zr6O4(OH)4(ib)12(H2O)]·3Hib with Sr(NO3)2 and H2mda in the presence of MnCl2 and Et3N in aceto-nitrile. The use of MnCl2 is key to the isolation of I as high-quality colorless crystals in good yield. The mol-ecular solid-state structure of I was determined by single-crystal X-ray diffraction. Compound I crystallizes in the monoclinic space group P21/c and shows a one-dimensional polymeric chain structure. Each monomeric unit of this coordination polymer consists of a central SrII ion in the NO8 coordination environment of two deprotonated ib- ligands and one fully protonated H2mda ligand. The C and O atoms of the H2mda ligand were refined as disordered over two sets of sites with site occupancies of 0.619 (3) and 0.381 (3). Compound I shows thermal stability up to 130°C in air.

12.
Acc Chem Res ; 54(17): 3377-3389, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34427081

ABSTRACT

This Account highlights recent experimental and theoretical work focusing on the development of polyoxometalates (POMs) as possible active switching units in what may be called "molecule-based memory cells". Herein, we critically discuss how multiply charged vanadium-containing POMs, which exhibit stable metal-oxo bonds and are characterized by the excellent ability to change their redox states without significant structural distortions of the central polyoxoanion core, can be immobilized best and how they may work optimally at appropriate surfaces. Furthermore, we critically discuss important issues and challenges on the long way toward POM-based nanoelectronics. This Account is divided into four sections shedding light on POM interplay in solution and on surfaces, ion soft-landing of mass-selected POMs on surfaces, electronic modification of POMs on surfaces, and computational modeling of POMs on surfaces. The sections showcase the complex nature of far-reaching POM interactions with the chemical surroundings in solution and the properties of POMs in the macroscopic environment of electrode surfaces. Section 2 describes complex relationships of POMs with their counter-cations, solvent molecules, and water impurities, which have been shown to exhibit a direct impact on the resulting surface morphology, where a concentration-dependent formation of micellar structures can be potentially observed. Section 3 gives insights into the ion soft-landing deposition of mass-selected POMs on electrode surfaces, which emerges as an appealing method because the simultaneous deposition of agglomeration-stimulating counter-cations can be avoided. Section 4 provides details of electronic properties of POMs and their modification by external electronic stimuli toward the development of multiple-state resistive (memristive) switches. Section 5 sheds light on issues of the determination of the electronic structure properties of POMs across their interfaces, which is difficult to address by experiment. The studies summarized in these four sections have employed various X-ray-scattering, microscopy, spectroscopy, and computational techniques for imaging of POM interfaces in solution and on surfaces to determine the adsorption type, agglomeration tendency, distribution, and oxidation state of deposited molecules. The presented research findings and conceptual ideas may assist experimentalists and theoreticians to advance the exploration of POM electrical conductivity as a function of metal redox and spin states and to pave the way for a realization of ("brain-inspired") POM-based memory devices, memristive POM-surface device engineering, and energy efficient nonvolatile data storage and processing technologies.

13.
Inorg Chem ; 60(15): 11599-11608, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34289690

ABSTRACT

Two series of charge-neutral coordination clusters featuring quasi-isostructural metal oxide cores, isolated as [Zr6Fe2Ln2O8(ib)14(bda)2(NO3)2]·xMeCN (Ln = La (1), Ce (2), Pr (3), and Nd (4); ib- = isobutyrate; H2bda = N-butyldiethanolamine) and [Zr6Fe2Ln2O8(ib)14(mda)2(NO3)2]·xMeCN (Ln = La (5), Ce (6), Pr (7), and Nd (8); H2mda = N-methyldiethanolamine), were obtained via one-pot reactions of [Fe3O(ib)6(H2O)3]NO3 as a critical precursor, Ln(NO3)3·6H2O (Ln = La, Ce, Pr, and Nd), the respective aminoalcohol, and [Zr6O4(OH)4(ib)12(H2O)]·3Hib in an acetonitrile solution. The coordination clusters in 1-8 feature {Zr6O8} cores that are structurally expanded by two 4f (Ln3+) and two 3d (Fe3+) metal ions, each individually coordinated to one of the eight oxide centers of {Zr6O8}, producing a metal skeleton where the 3d/4f positions cap four of the triangular faces of the central Zr6 octahedron. The coordination clusters differ in the chosen aminoalcohol coligands, N-butyldiethanolamine or N-methyldiethanolamine, which lead to a different isobutyrate coordination pattern in the two series, while the {Fe2Ln2Zr6O8} core structure remains virtually unaffected. All eight coordination clusters are obtained in moderate to good yields of 29-66% after only several days. Complexes 1-8 are stable against air and moisture; they are also surprisingly thermally stable up to 280 °C in air and in nitrogen atmosphere, and they represent the first reported examples of 3d/4f-functionalized zirconium oxide clusters.

14.
Inorg Chem ; 60(14): 10415-10425, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34192460

ABSTRACT

The controlled adsorption of polynuclear coordination compounds with specific structural and electronic characteristics on surfaces is crucial for the prospective implementation of molecule-surface interfaces into practical electronic devices. From this perspective, a neutral 3d,4f-coordination cluster [MnII3MnIVYb3O3(OH)(L·SMe)3(OOCMe)9]·2MeCN·3EtOH (1·2MeCN·3EtOH), where L·SMe- is a Schiff base, has been synthesized and fully characterized and its adsorption on two different solid substrates, gold and graphite, has been studied. The mixed-valence compound with a bilayered metal core structure and the structurally exposed thioether groups exhibits a substantially different surface bonding to metallic gold and semimetallic graphite substrates. While on graphite the adsorption takes place only on distinguished attraction points with a locally increased number of potential bonding sites such as terrace edges and other surface defects, on gold the molecules were found to adsorb rather weakly on randomly distributed adsorption sites of the surface terraces. This entirely different behavior provides important information for the development of advanced surface materials that may enable well-distributed ordered molecular assemblies.

15.
Inorg Chem ; 60(12): 8437-8441, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34048211

ABSTRACT

A new polyoxometalate compound consisting of the 39-tungsto-4-arsenate(III) unit with four incorporated VIV ions, isolated as (NH4)22[(VIVO)2(VIVO(H2O))(AsIIIWVI9O33)2(AsIIIWVI8.5VIV0.5(OH)O32)2(WVIO2)4]·48H2O (NH4-As4W39(V4)), was synthesized and fully characterized. SQUID magnetometry shows three weakly coupled VIV centers with an antiferromagnetic exchange interaction and one isolated VIV ion as a spin-1/2 Curie paramagnet. UV-vis spectroscopy indicates that the As4W39(V4) structure remains intact in aqueous solution for at least 24 h. To enable the deposition of As4W39(V4) from solution on gold surfaces, its trihexyltetradecylphosphonium salt, THTDP-As4W39(V4), was prepared. The IR spectra of both congeners reveal the structural identity of As4W39(V4) independent of the countercations. The X-ray absorption near-edge structure data confirm the presence of VIV centers in a distorted square-pyramidal coordination geometry in NH4-As4W39(V4) and THTDP-As4W39(V4). X-ray photoelectron spectroscopy of the latter, deposited on Au(111), shows that the 4 V and 35 W centers preserve their IV+ and VI+ oxidation states, while the remaining 4 W ions are reduced to IV+.

16.
Beilstein J Nanotechnol ; 12: 203-212, 2021.
Article in English | MEDLINE | ID: mdl-33728238

ABSTRACT

Highly ordered titanium oxide films grown on a Pt3Ti(111) alloy surface were utilized for the controlled immobilization and tip-induced electric field-triggered electronic manipulation of nanoscopic W3O9 clusters. Depending on the operating conditions, two different stable oxide phases, z'-TiO x and w'-TiO x , were produced. These phases show a strong effect on the adsorption characteristics and reactivity of W3O9 clusters, which are formed as a result of thermal evaporation of WO3 powder on the complex TiO x /Pt3Ti(111) surfaces under ultra-high vacuum conditions. The physisorbed tritungsten nano-oxides were found as isolated single units located on the metallic attraction points or as supramolecular self-assemblies with a W3O9-capped hexagonal scaffold of W3O9 units. By applying scanning tunneling microscopy to the W3O9-(W3O9)6 structures, individual units underwent a tip-induced reduction to W3O8. At elevated temperatures, agglomeration and growth of large WO3 islands, which thickness is strongly limited to a maximum of two unit cells, were observed. The findings boost progress toward template-directed nucleation, growth, networking, and charge state manipulation of functional molecular nanostructures on surfaces using operando techniques.

17.
Inorg Chem ; 60(1): 80-86, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33180468

ABSTRACT

A tris(alkoxo)pyridine-augmented Wells-Dawson polyoxometalate (nBu4N)6[WD-Py] (WD = P2V3W15O59(OCH2)3C, Py = C5H4N) was functionalized with phthalocyaninato metal moieties (MPc where M = Y or Yb and Pc = C32H16N8) to afford (nBu4N)4[HWD-Py(MPc)] compounds. High-resolution mass spectrometry was used to detect and identify the hybrid assembly. The magnetism studies reveal substantial differences between M = Yb (monomeric, single-ion paramagnetism) and M = Y (containing dimers, radical character). The results of electronic paramagnetic resonance spectroscopy, SQUID magnetometry, and magnetochemical calculations indicate the presence of intramolecular charge transfer from the MPc moiety to the polyoxometalate and of intermolecular charge transfer from the MPc moiety of one molecule to the polyoxometalate unit of another molecule. These compounds with identified VIV ions represent unique examples of transition-metal/lanthanide complex-POM hybrid compounds with nonphotoinduced charge transfer between electron donor and acceptor centers.

18.
Inorg Chem ; 59(22): 16122-16126, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33103900

ABSTRACT

The fully oxidized Lindqvist-type hexavanadate compounds decorated by phosphine-derivatized Au(I) moieties oriented in a transoid fashion (n-Bu4N)2[V6O13{(OCH2)3CCH2(N3C2C6H5)AuP(C6H4OMe)3}2] (POMNAu) and (n-Bu4N)2[V6O13{(OCH2)3CCH2OCH2(C2N3H)AuP(C6H4OMe)3}2] (POMCAu) have been prepared by azide-alkyne cycloaddition reactions and characterized by various techniques, including NMR, IR, and UV/vis spectroscopy and electrospray ionization mass spectrometry. Electronic structure calculations unveil the potential of these model hybrid junctions for application in controlled charge-transport experiments on substrate surfaces.

19.
Front Chem ; 7: 681, 2019.
Article in English | MEDLINE | ID: mdl-31750287

ABSTRACT

Two polynuclear cobalt(II,III) complexes, [Co5(N3)4(N-n-bda)4(bza·SMe)2] (1) and [Co6(N3)4(N-n-bda)2(bza·SMe)5(MeOH)4]Cl (2), where Hbza·SMe = 4-(methylthio)benzoic acid and N-n-H2bda = N-n-butyldiethanolamine, were synthesized and fully characterized by various techniques. Compound 1 exhibits an unusual, approximately C 2-symmetric {CoII Co 4 III } core of two isosceles Co3 triangles with perpendicularly oriented planes, sharing a central, high-spin CoII ion residing in a distorted tetrahedral coordination environment. This central CoII ion is connected to four outer, octahedrally coordinated low-spin CoIII ions via oxo bridges. Compound 2 comprises a semi-circular { Co 4 II Co 2 III } motif of four non-interacting high-spin CoII and two low-spin CoIII centers in octahedral coordination environments. Self-assembled monolayers (SAMs) of 1 and 2 were physisorbed on template-stripped gold surfaces contacted by an eutectic gallium-indium (EGaIn) tip. The acquired current density-voltage (I-V) data revealed that the cobalt-based SAMs are more electrically robust than those of the previously reported dinuclear {CuIILnIII} complexes with Ln = Gd, Tb, Dy, or Y (Schmitz et al., 2018a). In addition, between 170 and 220°C, the neutral, mixed-valence compound 1 undergoes a redox modification, yielding a {Co5}-based coordination cluster (1-A) with five non-interacting, high-spin octahedral CoII centers as indicated by SQUID magnetometry analysis in combination with X-ray photoelectron spectroscopy and infrared spectroscopy. Solvothermal treatment of 1 results in a high-nuclearity coordination cluster, [Co10(N3)2(N-n-bda)6(bza·SMe)6] (3), containing 10 virtually non-interacting high-spin CoII centers.

20.
Chem Commun (Camb) ; 55(90): 13554-13557, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31650144

ABSTRACT

The two first representatives of phthalocyaninato (Pc) lanthanide-ligated polyoxovanadate cages {[V12O32(Cl)](LnPc)n}n-5 (n = 1 or 2, Ln = Yb3+) were synthesised and fully characterised. These magnetic complexes form two-dimensional self-assembled monolayers exhibiting electrical conductivity on gold substrate surfaces, as assessed by using an EGaIn tip.

SELECTION OF CITATIONS
SEARCH DETAIL