Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 15(5): e0233113, 2020.
Article in English | MEDLINE | ID: mdl-32421727

ABSTRACT

Humans introduced paper mulberry (Broussonetia papyrifera) from Taiwan into the Pacific over 5000 years ago as a fiber source to make barkcloth textiles that were, and still are, important cultural artifacts throughout the Pacific. We have used B. papyrifera, a species closely associated to humans, as a proxy to understand the human settlement of the Pacific Islands. We report the first genetic analysis of paper mulberry textiles from historical and archaeological contexts (200 to 50 years before present) and compare our results with genetic data obtained from contemporary and herbarium paper mulberry samples. Following stringent ancient DNA protocols, we extracted DNA from 13 barkcloth textiles. We confirmed that the fiber source is paper mulberry in nine of the 13 textiles studied using the nuclear ITS-1 marker and by statistical estimates. We detected high genetic diversity in historical Pacific paper mulberry barkcloth with a set of ten microsatellites, showing new alleles and specific genetic patterns. These genetic signatures allow tracing connections to plants from the Asian homeland, Near and Remote Oceania, establishing links not observed previously (using the same genetic tools) in extant plants or herbaria samples. These results show that historic barkcloth textiles are cultural materials amenable to genetic analysis to reveal human history and that these artifacts may harbor evidence of greater genetic diversity in Pacific B. papyrifera in the past.


Subject(s)
Broussonetia/genetics , Textiles , Genotyping Techniques , Humans , Microsatellite Repeats/genetics , Pacific Islands , Taiwan
2.
PLoS One ; 14(6): e0217107, 2019.
Article in English | MEDLINE | ID: mdl-31216291

ABSTRACT

Paper mulberry, Broussonetia papyrifera (L.) L'Hér. ex Vent. (Moraceae), a dioecious species, was transported by humans from Taiwan to the islands of Remote Oceania. Its introduction and cultivation in Remote Oceania was intentional due to its cultural importance as a fiber source for barkcloth textiles. The aim of this study was to explore the genetic diversity and structure of paper mulberry populations within Remote Oceania in order to infer dispersal patterns that may reflect past human interaction among island groups. We present the integrated analysis of 380 samples (313 contemporary and 67 herbarium specimens) collected in Near and Remote Oceania. Genetic characterization was based on a set of ten microsatellites developed for B. papyrifera and complemented with the analysis of the ribosomal internal transcribed spacer ITS-1 sequence, a sex marker and the chloroplast ndhF-rpl32 intergenic spacer. Microsatellite data identify a total of 64 genotypes, despite this being a clonally propagated crop, and show three major dispersal hubs within Remote Oceania, centered on the islands of Fiji, Tonga, and Pitcairn. Of 64 genotypes identified, 55 correspond to genotypes associated to female-sexed plants that probably descend from plants introduced by the prehistoric Austronesian-speaking voyagers. The ratio of accessions to genotypes between herbarium and contemporary samples, suggests recent loss of genetic diversity. In addition to the chloroplast haplotypes described previously, we detected two new haplotypes within Remote Oceania both originating in Taiwan. This is the first study of a commensal species to show genetic structuring within Remote Oceania. In spite of the genetic bottleneck, the presence of only one sex, a timespan of less than 5000 years, and asexual propagation of this crop in Remote Oceania, we detect genetic diversity and regional structuring. These observations suggest specific migration routes between island groups within Remote Oceania.


Subject(s)
Broussonetia/genetics , Broussonetia/physiology , Human Activities , Plant Dispersal , DNA, Ribosomal/genetics , Genetic Variation , Haplotypes , Humans , Oceania
3.
Appl Plant Sci ; 5(8)2017 Aug.
Article in English | MEDLINE | ID: mdl-28924515

ABSTRACT

PREMISE OF THE STUDY: Broussonetia papyrifera (Moraceae) is native to Asia and is used as a medicinal plant and as a source of fiber for making paper. It was dispersed into the Pacific region as a fiber source for making nonwoven textiles (barkcloth). Microsatellites were developed to trace the human-mediated dispersal of this species into the Pacific region. METHODS AND RESULTS: A set of 36 microsatellites was isolated and initially assayed on 10 accessions to assess polymorphism. We found that 20 markers were polymorphic, with the number of alleles per marker ranging from four to 35 in 70 accessions genotyped from three Asian populations. Observed and expected heterozygosities ranged from 0.04 to 0.85 and from 0.19 to 0.94, respectively. These markers were tested in four Moraceae species and one Rosaceae species. CONCLUSIONS: These markers will be useful for the assessment of genetic diversity in B. papyrifera. They show low transferability to other species tested.

4.
Ann Bot ; 120(3): 387-404, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28633358

ABSTRACT

Background and Aims: Paper mulberry or Broussonetia papyrifera (L.) L'Hér. ex Vent. (Moraceae) is a dioecious species native to continental South-east Asia and East Asia, including Taiwan, that was introduced to the Pacific by pre-historic voyagers and transported intentionally and propagated asexually across the full range of Austronesian expansion from Taiwan to East Polynesia. The aim of this study was to gain insight into the dispersal of paper mulberry into Oceania through the genetic analysis of herbaria samples which represent a more complete coverage of the historical geographical range of the species in the Pacific before later introductions and local extinctions occurred. Methods: DNA from 47 herbarium specimens of B. papyrifera collected from 1882 to 2006 from different islands of the Pacific was obtained under ancient DNA protocols. Genetic characterization was based on the ribosomal internal transcribed spacer ITS-1 sequence, a sex marker, the chloroplast ndhF-rpl32 intergenic spacer and a set of ten microsatellites developed for B. papyrifera. Key Results: Microsatellites allowed detection of 15 genotypes in Near and Remote Oceanian samples, in spite of the vegetative propagation of B. papyrifera in the Pacific. These genotypes are structured in two groups separating West and East Polynesia, and place Pitcairn in a pivotal position. We also detected the presence of male plants that carry the Polynesian chloroplast DNA (cpDNA) haplotype, in contrast to findings in contemporary B. papyrifera populations where only female plants bear the Polynesian cpDNA haplotype. Conclusions: For the first time, genetic diversity was detected among paper mulberry accessions from Remote Oceania. A clear separation between West and East Polynesia was found that may be indicative of pulses during its dispersal history. The pattern linking the genotypes within Remote Oceania reflects the importance of central Polynesia as a dispersal hub, in agreement with archaeological evidence.


Subject(s)
Broussonetia/genetics , Genetic Variation , Genetics, Population , DNA, Chloroplast/genetics , DNA, Ribosomal Spacer/genetics , Genotype , Haplotypes , Islands , Microsatellite Repeats , Oceania , Phylogeography , Polynesia , Reproduction, Asexual
6.
PLoS One ; 11(8): e0161148, 2016.
Article in English | MEDLINE | ID: mdl-27529483

ABSTRACT

BACKGROUND: Paper mulberry (Broussonetia papyrifera (L.) L'Hér. ex Vent) is a dioecious tree native to East Asia and mainland Southeast-Asia, introduced prehistorically to Polynesia as a source of bark fiber by Austronesian-speaking voyagers. In Oceania, trees are coppiced and harvested for production of bark-cloth, so flowering is generally unknown. A survey of botanical records of paper mulberry revealed a distributional disjunction: the tree is apparently absent in Borneo and the Philippines. A subsequent study of chloroplast haplotypes linked paper mulberry of Remote Oceania directly to a population in southern Taiwan, distinct from known populations in mainland Southeast-Asia. METHODOLOGY: We describe the optimization and use of a DNA marker designed to identify sex in paper mulberry. We used this marker to determine the sex distribution in selected localities across Asia, Near and Remote Oceania. We also characterized all samples using the ribosomal internal transcribed spacer sequence (ITS) in order to relate results to a previous survey of ITS diversity. RESULTS: In Near and Remote Oceania, contemporary paper mulberry plants are all female with the exception of Hawaii, where plants of both sexes are found. In its natural range in Asia, male and female plants are found, as expected. Male plants in Hawaii display an East Asian ITS genotype, consistent with modern introduction, while females in Remote Oceania share a distinctive variant. CONCLUSIONS: Most paper mulberry plants now present in the Pacific appear to be descended from female clones introduced prehistorically. In Hawaii, the presence of male and female plants is thought to reflect a dual origin, one a prehistoric female introduction and the other a modern male introduction by Japanese/Chinese immigrants. If only female clones were dispersed from a source-region in Taiwan, this may explain the absence of botanical records and breeding populations in the Philippines and Borneo, and Remote Oceania.


Subject(s)
Broussonetia , Broussonetia/genetics , DNA, Plant/genetics , Genetic Variation , Pacific Ocean , Plant Dispersal
7.
Proc Natl Acad Sci U S A ; 112(44): 13537-42, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26438853

ABSTRACT

The peopling of Remote Oceanic islands by Austronesian speakers is a fascinating and yet contentious part of human prehistory. Linguistic, archaeological, and genetic studies have shown the complex nature of the process in which different components that helped to shape Lapita culture in Near Oceania each have their own unique history. Important evidence points to Taiwan as an Austronesian ancestral homeland with a more distant origin in South China, whereas alternative models favor South China to North Vietnam or a Southeast Asian origin. We test these propositions by studying phylogeography of paper mulberry, a common East Asian tree species introduced and clonally propagated since prehistoric times across the Pacific for making barkcloth, a practical and symbolic component of Austronesian cultures. Using the hypervariable chloroplast ndhF-rpl32 sequences of 604 samples collected from East Asia, Southeast Asia, and Oceanic islands (including 19 historical herbarium specimens from Near and Remote Oceania), 48 haplotypes are detected and haplotype cp-17 is predominant in both Near and Remote Oceania. Because cp-17 has an unambiguous Taiwanese origin and cp-17-carrying Oceanic paper mulberries are clonally propagated, our data concur with expectations of Taiwan as the Austronesian homeland, providing circumstantial support for the "out of Taiwan" hypothesis. Our data also provide insights into the dispersal of paper mulberry from South China "into North Taiwan," the "out of South China-Indochina" expansion to New Guinea, and the geographic origins of post-European introductions of paper mulberry into Oceania.


Subject(s)
DNA, Chloroplast/genetics , Genes, Chloroplast/genetics , Human Migration , Morus/genetics , Asia, Southeastern , Asian People , DNA, Chloroplast/chemistry , DNA, Plant/chemistry , DNA, Plant/genetics , Genetic Variation , Haplotypes , Humans , Indonesia , Islands , Molecular Sequence Data , Morus/classification , New Guinea , Oceania , Phylogeny , Phylogeography , Sequence Analysis, DNA , Taiwan
8.
PLoS One ; 8(2): e56549, 2013.
Article in English | MEDLINE | ID: mdl-23437166

ABSTRACT

BACKGROUND: Paper mulberry has been used for thousands of years in Asia and Oceania for making paper and bark-cloth, respectively. Museums around the world hold valuable collections of Polynesian bark-cloth. Genetic analysis of the plant fibers from which the textiles were made may answer a number of questions of interest related to provenance, authenticity or species used in the manufacture of these textiles. Recovery of nucleic acids from paper mulberry bark-cloth has not been reported before. METHODOLOGY: We describe a simple method for the extraction of PCR-amplifiable DNA from small samples of contemporary Polynesian bark-cloth (tapa) using two types of nuclear markers. We report the amplification of about 300 bp sequences of the ITS1 region and of a microsatellite marker. CONCLUSIONS: Sufficient DNA was retrieved from all bark-cloth samples to permit successful PCR amplification. This method shows a means of obtaining useful genetic information from modern bark-cloth samples and opens perspectives for the analyses of small fragments derived from ethnographic materials.


Subject(s)
DNA/isolation & purification , Morus/chemistry , Paper , DNA/chemistry , DNA/genetics , Humans , Microsatellite Repeats/genetics , Morus/genetics , Museums , Plant Bark/chemistry , Plant Bark/genetics
9.
Theor Appl Genet ; 120(6): 1219-31, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20062965

ABSTRACT

The process of vegetative propagation used to multiply grapevine varieties produces, in most cases, clones genetically identical to the parental plant. Nevertheless, spontaneous somatic mutations can occur in the regenerative cells that give rise to the clones, leading to consider varieties as populations of clones that conform to a panel of phenotypic traits. Using two sets of nuclear microsatellite markers, the present work aimed at evaluating and comparing the intravarietal genetic diversity within seven wine grape varieties: Cabernet franc, Cabernet Sauvignon, Chenin blanc, Grolleau, Pinot noir, Riesling, Savagnin, comprising a total number of 344 accessions of certified clones and introductions preserved in French repositories. Ten accessions resulted in being either self-progeny, possible offspring of the expected variety or misclassified varieties. Out of the 334 remaining accessions, 83 displayed genotypes different from the varietal reference, i.e., the microsatellite profile shared by the larger number of accessions. They showed a similarity value ranging from 0.923 to 0.992, and thus were considered as polymorphic monozygotic clones. The fraction of polymorphic clones ranged from 2 to 75% depending on the variety and the set of markers, the widest clonal diversity being observed within the Savagnin. Among the 83 polymorphic clones, 29 had unique genotype making them distinguishable; others were classified in 21 groups sharing the same genotype. All microsatellite markers were not equally efficient to show diversity within clone collections and a standard set of five microsatellite markers (VMC3a9, VMC5g7, VVS2, VVMD30, and VVMD 32) relevant to reveal clonal polymorphism is proposed.


Subject(s)
Genetic Variation , Vitis/classification , Vitis/genetics , Wine/classification , Alleles , France , Genetic Markers , Genotype , Microsatellite Repeats/genetics , Phylogeny , Polymorphism, Genetic
10.
Genome ; 49(11): 1459-72, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17426761

ABSTRACT

Intravarietal genetic diversification associated with geographical dispersal of a vegetatively propagated species was studied using grapevine Vitis vinifera L. 'Cabernet Sauvignon' as a model. Fifty-nine clonal samples obtained from 7 countries (France, Chile, Spain, Australia, Hungary, USA, and Italy) were analyzed using 84 microsatellite markers. Eighteen polymorphic microsatellite loci (21.4%) were detected, finding 22 different genotypes in the population analyzed with a genetic similarity of over 97%. The presence of chimeric clones was evidenced at locus VMC5g7 by means of a segregation analysis of descendants by self-pollination of a triallelic Chilean clone and by somatic embryogenesis analysis, showing a mutation in L2 cell layer. Only 2 clones (obtained from France and Australia) presented the ancestral genotype, and the most divergent genotype was exhibited by another French clone, which had accumulated 5 somatic mutations. The 2 largest populations considered (from France and Chile) showed a clear divergency in the polymorphisms detected. These antecedents enabled the tracing of geographical dispersal with a phylogenetic hypothesis supporting France as the center of origin of diversification of Cabernet Sauvignon. The results obtained could help to explain diversification processes in other grapevine cultivars. The possibility that this kind of genetic variability occurs in other vegetatively propagated species is discussed, focusing on possible fingerprinting applications.


Subject(s)
Genetic Variation , Microsatellite Repeats , Vitis/genetics , Chimera , Clone Cells , Cluster Analysis , Phylogeny , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...