ABSTRACT
BACKGROUND: Colombia was the second most affected country during the American Zika virus (ZIKV) epidemic, with over 109,000 reported cases. Despite the scale of the outbreak, limited genomic sequence data were available from Colombia. We sought to sequence additional samples and use genomic epidemiology to describe ZIKV dynamics in Colombia. METHODS: We sequenced ZIKV genomes directly from clinical diagnostic specimens and infected Aedes aegypti samples selected to cover the temporal and geographic breadth of the Colombian outbreak. We performed phylogeographic analysis of these genomes, along with other publicly-available ZIKV genomes from the Americas, to estimate the frequency and timing of ZIKV introductions to Colombia. RESULTS: We attempted PCR amplification on 184 samples; 19 samples amplified sufficiently to perform sequencing. Of these, 8 samples yielded sequences with at least 50% coverage. Our phylogeographic reconstruction indicates two separate introductions of ZIKV to Colombia, one of which was previously unrecognized. We find that ZIKV was first introduced to Colombia in February 2015 (95%CI: Jan 2015 - Apr 2015), corresponding to 5 to 8 months of cryptic ZIKV transmission prior to confirmation in September 2015. Despite the presence of multiple introductions, we find that the majority of Colombian ZIKV diversity descends from a single introduction. We find evidence for movement of ZIKV from Colombia into bordering countries, including Peru, Ecuador, Panama, and Venezuela. CONCLUSIONS: Similarly to genomic epidemiological studies of ZIKV dynamics in other countries, we find that ZIKV circulated cryptically in Colombia. More accurately dating when ZIKV was circulating refines our definition of the population at risk. Additionally, our finding that the majority of ZIKV transmission within Colombia was attributable to transmission between individuals, rather than repeated travel-related importations, indicates that improved detection and control might have succeeded in limiting the scale of the outbreak within Colombia.
Subject(s)
Genome, Viral , Zika Virus Infection/virology , Zika Virus/genetics , Aedes/virology , Animals , Colombia/epidemiology , Disease Outbreaks , Evolution, Molecular , Genetic Variation , Humans , Phylogeny , Phylogeography , Zika Virus/classification , Zika Virus/isolation & purification , Zika Virus Infection/epidemiology , Zika Virus Infection/transmissionABSTRACT
Dengue virus (DENV) is a flavivirus responsible for the most common and burdensome arthropod-borne viral disease of humans[1]. DENV evolution has been extensively studied on broad geographic and time scales, using sequences from a single gene[2,3]. It is believed that DENV evolution in humans is dominated primarily by purifying selection due to the constraint of maintaining fitness in both humans and mosquitoes[4,5]. Few studies have explored DENV evolutionary dynamics using whole genome sequences, nor have they explored changes in viral diversity that occur during intra-epidemic periods. We used deep sequencing of the viral coding region to characterize DENV-1 evolution in a Colombian population sampled during two high-prevalence dengue seasons in which serotype dominance shifted. Our data demonstrate patterns of strain extinction and replacement within DENV-1 as its prevalence waned and DENV-3 became established. A comparison of whole-genome versus single-gene-based phylogenetic analyses highlights an important difference in evolutionary patterns. We report a trend of higher nonsynonymous to synonymous diversity ratios among non-structural (NS) genes, and statistically significantly higher values among these ratios in the NS1 gene after DENV-1 strain replacement. These results suggest that positive selection could be driving DENV evolution within individual communities. Signals of positive selection coming from distinct samples may be drowned out when combining multiple regions with differing patterns of endemic transmission as commonly done by large-scale geo-temporal assessments. Here, we frame our findings within a small, local transmission history which aids significance. Moreover, these data suggest that the NS1 gene, rather than the E gene, may be a target of positive selection, although not mutually exclusive, and potentially useful sentinel of adaptive changes at the population level.