Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38592844

ABSTRACT

This research investigated the synthesis of biochar through the direct pyrolysis of pre-roasted sunflower seed shells (SFS) and peanut shells (PNS) and compared their application for the effective removal of textile dyes from wastewater. Biochar prepared at 900 °C (SFS900 and PNS900) showed the highest adsorption capacity, which can be attributed to the presence of higher nitrogen content and graphite-like structures. CHNS analysis revealed that PNS900 exhibited an 11.4% higher carbon content than SFS900, which enhanced the environmental stability of PNS biochar. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses of the produced biochar indicated the degradation of cellulosic and lignin moieties. X-ray photoelectron spectroscopy (XPS) revealed a 13.8% and 22.6% increase in C-C/C=C mass concentrations in the SFS900 and PNS900, respectively, and could be attributed to the condensation of polyaromatic structures. Batch experiments for dye removal demonstrated that irrespective of dye species, PNS900 exhibited superior dye removal efficiency compared to SFS900 at similar dosages. In addition to H-bonding and electrostatic interactions, the presence of pyridinic-N and graphitic-N can play a vital role in enhancing Lewis acid-base and π-π EDA interactions. The results can provide valuable insights into the biochar-dye interaction mechanisms.

2.
Phytother Res ; 38(3): 1191-1223, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176910

ABSTRACT

Cancer profoundly influences morbidity and fatality rates worldwide. Patients often have dismal prognoses despite recent improvements in cancer therapy regimens. However, potent biomolecules derived from natural sources, including medicinal and dietary plants, contain biological and pharmacological properties to prevent and treat various human malignancies. Capsaicin is a bioactive phytocompound present in red hot chili peppers. Capsaicin has demonstrated many biological effects, including antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic capabilities. This review highlights the cellular and molecular pathways through which capsaicin exhibits antineoplastic activities. Our work also depicts the synergistic anticancer properties of capsaicin in conjunction with other natural bioactive components and approved anticancer drugs. Capsaicin inhibits proliferation in various cancerous cells, and its antineoplastic actions in numerous in vitro and in vivo carcinoma models impact oncogenesis, tumor-promoting and suppressor genes, and associated signaling pathways. Capsaicin alone or combined with other phytocompounds or approved antineoplastic drugs triggers cell cycle progression arrest, generating reactive oxygen species and disrupting mitochondrial membrane integrity, ultimately stimulating caspases and promoting death. Furthermore, capsaicin alone or in combination can promote apoptosis in carcinoma cells by enhancing the p53 and c-Myc gene expressions. In conclusion, capsaicin alone or in combination can have enormous potential for cancer prevention and intervention, but further high-quality studies are needed to firmly establish the clinical efficacy of this phytocompound.


Subject(s)
Antineoplastic Agents , Capsicum , Carcinoma , Humans , Capsaicin/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis , Carcinoma/drug therapy , Camphor/pharmacology , Menthol , Cell Line, Tumor
3.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37830928

ABSTRACT

Dietary compounds, including fruits, vegetables, nuts, and spices, have been shown to exhibit anticancer properties due to their high concentrations of vitamins, minerals, fiber, and secondary metabolites, known as phytochemicals. Although emerging studies suggest that avocado (Persea americana Mill) displays antineoplastic properties in addition to numerous other health benefits, current literature lacks an updated comprehensive systematic review dedicated to the anticancer effects of avocado. This review aims to explore the cancer-preventive effects of avocados and the underlying molecular mechanisms. The in vitro studies suggest the various avocado-derived products and phytochemicals induced cytotoxicity, reduced cell viability, and inhibited cell proliferation. The in vivo studies revealed reduction in tumor number, size, and volume as well. The clinical studies demonstrated that avocado leaf extract increased free oxygen radical formation in larynx carcinoma tissue. Various avocado products and phytochemicals from the avocado fruit, including avocatin-B, persin, and PaDef defensin, may serve as viable cancer prevention and treatment options based on current literature. Despite many favorable outcomes, past research has been limited in scope, and more extensive and mechanism-based in vivo and randomized clinical studies should be performed before avocado-derived bioactive phytochemicals can be developed as cancer preventive agents.

4.
Pharmaceutics ; 15(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37631276

ABSTRACT

Cancer is one of the most common lethal diseases and the leading cause of mortality worldwide. Effective cancer treatment is a global problem, and subsequent advancements in nanomedicine are useful as substitute management for anti-cancer agents. Nanotechnology, which is gaining popularity, enables fast-expanding delivery methods in science for curing diseases in a site-specific approach, utilizing natural bioactive substances because several studies have established that natural plant-based bioactive compounds can improve the effectiveness of chemotherapy. Bioactive, in combination with nanotechnology, is an exceptionally alluring and recent development in the fight against cancer. Along with their nutritional advantages, natural bioactive chemicals may be used as chemotherapeutic medications to manage cancer. Alginate, starch, xanthan gum, pectin, guar gum, hyaluronic acid, gelatin, albumin, collagen, cellulose, chitosan, and other biopolymers have been employed successfully in the delivery of medicinal products to particular sites. Due to their biodegradability, natural polymeric nanobiocomposites have garnered much interest in developing novel anti-cancer drug delivery methods. There are several techniques to create biopolymer-based nanoparticle systems. However, these systems must be created in an affordable and environmentally sustainable way to be more readily available, selective, and less hazardous to increase treatment effectiveness. Thus, an extensive comprehension of the various facets and recent developments in natural polymeric nanobiocomposites utilized to deliver anti-cancer drugs is imperative. The present article provides an overview of the latest research and developments in natural polymeric nanobiocomposites, particularly emphasizing their applications in the controlled and targeted delivery of anti-cancer drugs.

5.
Ann Pharm Fr ; 81(6): 925-934, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37442293

ABSTRACT

Litchi (Litchi chinensis) is a widely consumed fruit that has been used in many food and health-promoting products worldwide. Litchi is a good source of nutrients including vitamin and minerals, dietary fibers, proteins, and carbohydrates. Of note, several studies have reported that the constituents of litchi fruits elicit antioxidant properties and help to maintain blood pressure, and reduce the risk of stroke and heart attack. An unclearly explained outbreak occurred in June 2019 in Muzaffarpur (Bihar), India resulted in the death of more than 150 children in a week, followed by a total of 872 cases and 176 deaths. This outbreak was associated with the consumption of Litchi fruits and the occurrence of acute encephalitis syndrome. In this high Litchi production region, a huge number of acute encephalitis syndrome cases have been registered in children in the past two decades with high mortality due to these neurological disorders linked to the consumption of litchi. While finding out the causes for this recurrent outbreak, whether or not it is caused by a virus or the phytotoxins of litchi is to be considered critical. Amongst the probable causes were observed to be methylene cyclopropyl acetic acid and hypoglycin-A found in unripe Litchi fruits which can cause hypoglycemia and as a plausible cause of AES outbreaks. This review addresses this recurrent outbreak in-depth exploring the possible causes and discusses the possible mechanisms by which phytotoxins of litchi such as hypoglycin A and methylene cyclopropylglycine which may elicit such toxic effects.

6.
Mar Pollut Bull ; 194(Pt B): 115265, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453167

ABSTRACT

In this study, for the first time, we evaluated microplastic contamination in water, beach sand, and fish samples collected from the seven most famous and crowded beaches of the eastern coast of India, which cover around 1200 km. The average number of microplastics found was 80 ± 33 microplastics/m3 and 4 ± 2 microplastics/kg dry weight with a numerical abundance of polyethylene and polystyrene for water and sand samples, respectively. The polymer hazard index score, which represents the severity of the microplastics scenario in the studied locations, depicts that this coastline falls under hazard levels IV and V (most hazardous) for water and sand samples, respectively. The study revealed that approximately 30 % of the commercially important fishes collected from the locations contained microplastics with polyethylene terephthalate and polypropylene being the most abundant types. Rastrelliger kanagurta and Sardinella gibbosa were identified as the most polluted species.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Plastics , Sand , Water Pollutants, Chemical/analysis , Environmental Monitoring , Fishes , India
7.
Cancers (Basel) ; 15(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37345145

ABSTRACT

Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are enzymes that remove or add acetyl groups to lysine residues of histones, respectively. Histone deacetylation causes DNA to more snugly encircle histones and decreases gene expression, whereas acetylation has the opposite effect. Through these small alterations in chemical structure, HATs and HDACs regulate DNA expression. Recent research indicates histone deacetylase inhibitors (HDACis) may be used to treat malignancies, including leukemia, B-cell lymphoma, virus-associated tumors, and multiple myeloma. These data suggest that HDACis may boost the production of immune-related molecules, resulting in the growth of CD8-positive T-cells and the recognition of nonreactive tumor cells by the immune system, thereby diminishing tumor immunity. The argument for employing epigenetic drugs in the treatment of acute myeloid leukemia (AML) patients is supported by evidence that both epigenetic changes and mutations in the epigenetic machinery contribute to AML etiology. Although hypomethylating drugs have been licensed for use in AML, additional epigenetic inhibitors, such as HDACis, are now being tested in humans. Preclinical studies evaluating the efficacy of HDACis against AML have shown the ability of specific agents, such as anobinostat, vorinostat, and tricostatin A, to induce growth arrest, apoptosis, autophagy and cell death. However, these inhibitors do not seem to be successful as monotherapies, but instead achieve results when used in conjunction with other medications. In this article, we discuss the mounting evidence that HDACis promote extensive histone acetylation, as well as substantial increases in reactive oxygen species and DNA damage in hematological malignant cells. We also evaluate the potential of various natural product-based HDACis as therapeutic agents to combat hematological malignancies.

8.
Nutrients ; 15(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839349

ABSTRACT

The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.


Subject(s)
Arecaceae , Euterpe , Euterpe/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Arecaceae/chemistry , Diet , Fruit/chemistry
9.
Cancers (Basel) ; 15(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36765950

ABSTRACT

Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer-related death worldwide. Limitations with existing treatment regimens have demanded the search for better treatment options. Different phytochemicals with promising anti-CRC activities have been reported, with the molecular mechanism of actions still emerging. This review aims to summarize recent progress on the study of natural phenolic compounds in ameliorating CRC using in vivo models. This review followed the guidelines of the Preferred Reporting Items for Systematic Reporting and Meta-Analysis. Information on the relevant topic was gathered by searching the PubMed, Scopus, ScienceDirect, and Web of Science databases using keywords, such as "colorectal cancer" AND "phenolic compounds", "colorectal cancer" AND "polyphenol", "colorectal cancer" AND "phenolic acids", "colorectal cancer" AND "flavonoids", "colorectal cancer" AND "stilbene", and "colorectal cancer" AND "lignan" from the reputed peer-reviewed journals published over the last 20 years. Publications that incorporated in vivo experimental designs and produced statistically significant results were considered for this review. Many of these polyphenols demonstrate anti-CRC activities by inhibiting key cellular factors. This inhibition has been demonstrated by antiapoptotic effects, antiproliferative effects, or by upregulating factors responsible for cell cycle arrest or cell death in various in vivo CRC models. Numerous studies from independent laboratories have highlighted different plant phenolic compounds for their anti-CRC activities. While promising anti-CRC activity in many of these agents has created interest in this area, in-depth mechanistic and well-designed clinical studies are needed to support the therapeutic use of these compounds for the prevention and treatment of CRC.

10.
Crit Rev Food Sci Nutr ; 63(30): 10499-10519, 2023.
Article in English | MEDLINE | ID: mdl-35638309

ABSTRACT

Cancer is a leading cause of morbidity and mortality across the globe. Emerging evidence suggests that consumption of a well-balanced diet containing a wide variety of vegetables, fruits, and whole grains can prevent the development of, halt, or reverse cancer progression. Carica papaya L. (papaya) has a wide distribution throughout many countries. Although the fruits of C. papaya are primarily consumed as food, various parts of this tree, including the bark, fruits, latex, seeds, and roots, have been used in traditional medicine for health promotion and disease mitigation. While numerous individual studies have investigated anticancer efficacies of various products and constituents of C. papaya, an up-to-date, comprehensive, and critical evaluation of available research data covering its role in the prevention and intervention of various human malignancies has not been conducted according to our knowledge. The purpose of this review is to present a systematic, comprehensive, and critical analysis of the cancer-preventive potential of C. papaya extracts, fractions, and isolated phytochemicals with a special emphasis on the cellular and molecular mechanisms of action. Moreover, the bioavailability, pharmacokinetics, and safety profiles of individual phytochemicals of C. papaya, as well as current limitations, challenges, and future directions of research, have also been discussed.


Subject(s)
Carica , Neoplasms , Humans , Carica/chemistry , Plant Extracts/chemistry , Vegetables , Seeds/chemistry , Neoplasms/prevention & control
11.
Pharmacol Res ; 188: 106630, 2023 02.
Article in English | MEDLINE | ID: mdl-36581166

ABSTRACT

Mangosteen (Garcinia mangostana L.), also known as the "queen of fruits", is a tropical fruit of the Clusiacea family. While native to Southeast Asian countries, such as Thailand, Indonesia, Malaysia, Myanmar, Sri Lanka, India, and the Philippines, the fruit has gained popularity in the United States due to its health-promoting attributes. In traditional medicine, mangosteen has been used to treat a variety of illnesses, ranging from dysentery to wound healing. Mangosteen has been shown to exhibit numerous biological and pharmacological activities, such as antioxidant, anti-inflammatory, antibacterial, antifungal, antimalarial, antidiabetic, and anticancer properties. Disease-preventative and therapeutic properties of mangosteen have been ascribed to secondary metabolites called xanthones, present in several parts of the tree, including the pericarp, fruit rind, peel, stem bark, root bark, and leaf. Of the 68 mangosteen xanthones identified so far, the most widely-studied are α-mangostin and γ-mangostin. Emerging studies have found that mangosteen constituents and phytochemicals exert encouraging antineoplastic effects against a myriad of human malignancies. While there are a growing number of individual research papers on the anticancer properties of mangosteen, a complete and critical evaluation of published experimental findings has not been accomplished. Accordingly, the objective of this work is to present an in-depth analysis of the cancer preventive and anticancer potential of mangosteen constituents, with a special emphasis on the associated cellular and molecular mechanisms. Moreover, the bioavailability, pharmacokinetics, and safety of mangosteen-derived agents together with current challenges and future research avenues are also discussed.


Subject(s)
Garcinia mangostana , Xanthones , Humans , Garcinia mangostana/chemistry , Garcinia mangostana/metabolism , Xanthones/pharmacology , Xanthones/therapeutic use , Biological Availability , Fruit/chemistry , Plant Extracts/pharmacology
12.
J Chem Phys ; 157(18): 184503, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36379783

ABSTRACT

Liquid water is well-known for its intriguing thermodynamic anomalies in the supercooled state. The phenomenological two-state models-based on the assumption of the existence of two types of competing local states (or, structures) in liquid water-have been extremely successful in describing water's thermodynamic anomalies. However, the precise structural features of these competing local states in liquid water still remain elusive. Here, we have employed a predefined structural order parameter-free approach to unambiguously identify two types of competing local states-entropically and energetically favored-with significantly different structural and energetic features in the TIP4P/2005 liquid water. This identification is based on the heterogeneous structural relaxation of the system in the potential energy landscape (PEL) during the steepest-descent energy minimization. This heterogeneous relaxation is characterized using order parameters inspired by the spin-glass transition in frustrated magnetic systems. We have further established a direct relationship between the population fluctuation of the two states and the anomalous behavior of the heat capacity in supercooled water. The composition-dependent spatial distribution of the entropically favored local states shows an interesting crossover from a spanning network-like single cluster to the spatially delocalized clusters in the close vicinity of the Widom line. Additionally, this study establishes a direct relationship between the topographic features of the PEL and the water's thermodynamic anomalies in the supercooled state and provides alternate markers (in addition to the locus of maxima of thermodynamic response functions) for the Widom line in the phase plane.


Subject(s)
Hot Temperature , Water , Thermodynamics , Water/chemistry
13.
Life (Basel) ; 12(11)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36362950

ABSTRACT

BACKGROUND: Cancer is, at present, among the leading causes of morbidity globally. Despite advances in treatment regimens for cancer, patients suffer from poor prognoses. In this context, the availability of vast natural resources seems to alleviate the shortcomings of cancer chemotherapy. The last decade has seen a breakthrough in the investigations related to the anticancer potential of dietary phytoconstituents. Interestingly, a handsome number of bioactive principles, ranging from phenolic acids, phenylpropanoids, flavonoids, stilbenes, and terpenoids to organosulphur compounds have been screened for their anticancer properties. Among the phenylpropanoids currently under clinical studies for anticancer activity, eugenol is a promising candidate. Eugenol is effective against cancers like breast, cervical, lung, prostate, melanomas, leukemias, osteosarcomas, gliomas, etc., as evident from preclinical investigations. OBJECTIVE: The review aims to focus on cellular and molecular mechanisms of eugenol for cancer prevention and therapy. METHODS: Based on predetermined criteria, various scholarly repositories, including PubMed, Scopus, and Science Direct were analyzed for anticancer activities of eugenol. RESULTS: Different biochemical investigations reveal eugenol inducing cytotoxicity, inhibiting phases of the cell cycles, programmed cell death, and auto-phagocytosis in studied cancer lines; thus, portraying eugenol as a promising anticancer molecule. A survey of current literature has unveiled the molecular mechanisms intervened by eugenol in exercising its anticancer role. CONCLUSION: Based on the critical analysis of the literature, eugenol exhibits vivid signaling pathways to combat cancers of different origins. The reports also depict the advancement of novel nano-drug delivery approaches upgrading the therapeutic profile of eugenol. Therefore, eugenol nanoformulations may have enormous potential for both the treatment and prevention of cancer.

14.
Phytomedicine ; 97: 153909, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35092896

ABSTRACT

BACKGROUND: Natural products, with incredible chemical diversity, have been widely studied for their antitumor potential. Quercetin (QU) and quercetin glycoside (rutin), both polyphenolic flavonoids, stick out amongst the natural products, through various studies. Rutin (RU) and its aglycone (QU) have various biological properties that include antioxidant, anti-inflammatory, and anticarcinogenic activities. However, several side effects have restricted the efficacy of these polyphenolic flavonoids, which makes it necessary to use new strategies involving low and pharmacological doses of QU and RU, either alone or in combination with other anticancer drugs. PURPOSE: The aim of this study is to present a comprehensive and critical evaluation of the anticancer ability of different nano-formulations of RU and QU for improved treatment of various malignancies. METHODS: Studies were recognized via systematic searches of ScienceDirect, PubMed, and Scopus databases. Eligibility checks were conducted based upon predefined selection criteria. Ninety articles were included in this study. RESULTS: There was conclusive evidence for the association between anticancer activity and treatment with RU or QU. Furthermore, studies indicated that nano-formulations of RU and QU have greater anticancer activities in comparison to either agent alone, which leads to increased efficiency for treating cancer. CONCLUSION: The results of this systematic review demonstrate the anticancer activities of nano-formulations of RU and QU and their molecular mechanisms through preclinical studies. This paper also attempts to contribute to further research by addressing the current limitations/challenges and proposing additional studies to realize the full potential of RU- and QU-based formulations for cancer treatment.


Subject(s)
Antineoplastic Agents , Neoplasms , Flavonoids , Humans , Neoplasms/drug therapy , Quercetin/pharmacology , Rutin/pharmacology
15.
Pharmacol Res ; 175: 105837, 2022 01.
Article in English | MEDLINE | ID: mdl-34450316

ABSTRACT

Garlic (Allium sativum L.) is one of the oldest plants cultivated for its dietary and medicinal values. This incredible plant is endowed with various pharmacological attributes, such as antimicrobial, antiarthritic, antithrombotic, antitumor, hypoglycemic, and hypolipidemic activities. Among the various beneficial pharmacological effects of garlic, the anticancer activity is presumably the most studied. The consumption of garlic provides strong protection against cancer risk. Taking into account the multi-targeted actions and absence of considerable toxicity, a few active metabolites of garlic are probably to play crucial roles in the killing of cancerous cells. Garlic contains several bioactive molecules with anticancer actions and these include diallyl trisulfide, allicin, diallyl disulfide, diallyl sulfide, and allyl mercaptan. The effects of various garlic-derived products, their phytoconstituents and nanoformulations have been evaluated against skin, prostate, ovarian, breast, gastric, colorectal, oral, liver, and pancreatic cancers. Garlic extract, its phytocompounds and their nanoformulations have been shown to inhibit the different stages of cancer, including initiation, promotion, and progression. Besides, these bioactive metabolites alter the peroxidation of lipid, activity of nitric oxide synthetase, nuclear factor-κB, epidermal growth factor receptor, and protein kinase C, cell cycle, and survival signaling. The current comprehensive review portrays the functions of garlic, its bioactive constituents and nanoformulations against several types of cancers and explores the possibility of developing these agents as anticancer pharmaceuticals.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Garlic , Neoplasms/prevention & control , Phytochemicals/therapeutic use , Plant Preparations/therapeutic use , Animals , Drug Compounding , Humans , Phytochemicals/adverse effects , Phytotherapy , Plant Preparations/adverse effects , Primary Prevention
16.
Front Oncol ; 11: 697143, 2021.
Article in English | MEDLINE | ID: mdl-34307163

ABSTRACT

BACKGROUND: The banana (Musa spp.) plant produces elongated and edible fruit. The two main parthenocarpic species of banana are Musa accuminata Colla and Musa balbisiana Colla. There are several health-promoting and disease-preventing effects of Musa accuminata Colla, which are attributed to its important bioactive compounds, including phenolics, carotenoids, biogenic amines, phytosterols, and volatile oils, found in the stem, fruit, pseudostem, leaf, flower, sap, inner trunk, root, and inner core. Banana possesses numerous pharmacological activities, such as antioxidant, immunomodulatory, antimicrobial, antiulcerogenic, hypolipidemic, hypoglycemic, leishmanicidal, anthelmintic, and anticancer properties. Various individual studies have reported anticancer effects of different components of the banana plant. However, according to our understanding, an up-to-date, systematic, and critical analysis of existing scientific results has not yet been carried out. OBJECTIVES: This review aims to include a thorough assessment of banana and its phytochemicals for cancer prevention and therapy with a focus on cellular and molecular mechanisms of action. METHODS: The available research studies on anticancer activities of banana extracts, fractions and pure compounds were collected using various scholarly databases, such as PubMed, ScienceDirect, and Scopus, based on predetermined selection criteria. RESULTS: Various banana extracts, fractions, and phytoconstituents, including ferulic acid, protocatechualdehyde, 2-pentanone, 4-epicyclomusalenone, cycloeucalenol acetate, and chlorogenic acid, have been shown to exhibit cancer preventative and anticancer activities in breast, cervical, colorectal, esophageal, hepatic, oral, prostate, and skin cancers. Bioactive components present in bananas have exhibited antiproliferative, cell cycle arrest-inducing, apoptotic, anti-adhesive, anti-invasive, and antiangiogenic effects through modulation of diverse, dysregulated oncogenic signaling pathways. CONCLUSION: Based on the critical analysis of available literature, banana products and phytoconstituents show enormous potential for future development of drugs for cancer prevention and therapy. However, more mechanistic studies and well-designed clinical trials should be performed to establish its efficacy.

17.
Curr Drug Targets ; 22(15): 1799-1807, 2021.
Article in English | MEDLINE | ID: mdl-33992061

ABSTRACT

γ-secretase is an intramembrane protease sub-assembly that sunders transmembrane proteins. It is involved in intramembrane proteolysis and also contributes to the regeneration of transmembrane protein. The amyloid precursor proteins (APPs) are typical γ-secretase substrates. These proteins are cleaved to produce 36-43 amyloid-beta (Aß) amino acid peptides. Abnormal folding of these proteins fragments leads to amyloid plaques, which are frequently encountered in Alzheimer's disease. Some Type I class of integral membrane proteins is processed under the influence of γ-secretase, such as receptor tyrosine-protein kinase erbB4 and CD44 glycoprotein. γ-Secretase is being explored in several diseases as a clinical goal. Both γ-secretase inhibitors (GSIs) and γ-secretase modulators (GSMs) are being evaluated for this purpose. A large amount of γ-secretase inhibitors (GSIs) from peptide to non-peptide have been disclosed, offering several lead compounds for the design and optimization of γ-secretase targets, but most GSIs lack sufficient potency, exhibit low penetration in the brain, and manifest low selectiveness. γ-secretase inhibitors are obliquely a regulator of a γ-secretase substrate Notch, and valuable in the development of ß-amyloid peptide (Aß). These γ-secretase inhibitors block the Notch signaling pathway in autoimmune and lymphoproliferative disorders, like autoimmune lymphoproliferative syndrome (ALPS) and systemic lupus erythematosus (SLE), and perhaps even in cancerous cell proliferation, angiogenesis, and cellular differentiation of human-induced pluripotent stem cells (hiPSC). The current review portrays the mechanism, regulation, and inhibition of γ-secretase in the management of a wide assortment of diseases.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Receptors, Notch , Signal Transduction , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Humans , Signal Transduction/drug effects
18.
Biomedicines ; 9(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925750

ABSTRACT

Camptothecin (CPT), a natural plant alkaloid, has indicated potent antitumor activities via targeting intracellular topoisomerase I. The promise that CPT holds in therapies is restricted through factors that include lactone ring instability and water insolubility, which limits the drug oral solubility and bioavailability in blood plasma. Novel strategies involving CPT pharmacological and low doses combined with nanoparticles have indicated potent anticancer activity in vitro and in vivo. This systematic review aims to provide a comprehensive and critical evaluation of the anticancer ability of nano-CPT in various cancers as a novel and more efficient natural compound for drug development. Studies were identified through systematic searches of PubMed, Scopus, and ScienceDirect. Eligibility checks were performed based on predefined selection criteria. Eighty-two papers were included in this systematic review. There was strong evidence for the association between antitumor activity and CPT treatment. Furthermore, studies indicated that CPT nano-formulations have higher antitumor activity in comparison to free CPT, which results in enhanced efficacy for cancer treatment. The results of our study indicate that CPT nano-formulations are a potent candidate for cancer treatment and may provide further support for the clinical application of natural antitumor agents with passive targeting of tumors in the future.

19.
Mar Pollut Bull ; 163: 111960, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33453512

ABSTRACT

Although India is one of the major plastic-waste-generating countries, few studies have been conducted on microplastics (MPs) in freshwater systems that are key contributors to oceans. The current study explores MPs in sediments and water that were collected at five major cities across the Ganga River. MPs number and mass density range in sediment were found to be 17 to 36 items/kg dry weight (d.w.) and 10 to 45 mg/kg d.w. of sediments, respectively, while in the water sample, they were 380 to 684 items/1000 m3 and 143 to 340 mg/1000 m3, respectively. Overall, white color and film-shaped MPs were the major contributors in all samples. MPs of 2.5-5 mm size contributed to a greater number and mass as compared to other fractions. Polyethylene was found to be a widely distributed plastic-type reflecting its high usability.


Subject(s)
Microplastics , Water Pollutants, Chemical , Cities , Environmental Monitoring , Fresh Water , Geologic Sediments , India , Oceans and Seas , Plastics , Rivers , Water , Water Pollutants, Chemical/analysis
20.
Nat Prod Res ; 35(12): 2086-2089, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31429296

ABSTRACT

Solena amplexicaulis (Lam.) Gandhi (family- Cucurbitaceae), is used both in the Indian traditional system and folk medicine to treat several pathophysiological conditions and complex diseases including cancer. The screening of the phytochemicals of this plant (aerial parts) was performed to evaluate their cytotoxic effect against an in vitro cancer model utilising acute promyelocytic leukaemia HL60 cell line. Phytoconstituents were isolated by column chromatography and characterised. The purified protein was extracted, isolated and purified by using standard techniques. The cytotoxicity was evaluated by MTT assay. Spectral analysis revealed the isolated phytochemicals to be Morin-3-O-xyloside (1) and Morin 3-O-glucoside (2). The purified protein (P1) was found to be monomeric having a molecular weight of 30.2 kDa. Watching over 24 h exposure, compound 1 (IC50 1.5 µmol/L), compound 2 (IC50 3.5 µmol/L), and P1 (2.67 µmol/L) exhibited significant cytotoxic activity.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cucurbitaceae/chemistry , Flavonoids/chemistry , Phytochemicals/pharmacology , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Cucurbitaceae/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HL-60 Cells , Humans , Medicine, Ayurvedic , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Plants, Medicinal/chemistry , Secondary Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...