Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38341724

ABSTRACT

A 2.45 GHz electron cyclotron resonance (ECR) ion source coupled to a gas-jet skimmer system has been developed for the online production of radioactive ion beams (RIBs). Using radial injection of gas jet in the ion source, RIBs of 11C1+, 11CO21+, and 11CO1+ have been produced online with beam intensity up to about 9 × 103 particles per second for a 1 µA primary proton beam bombarding a nitrogen gas target. The details of the gas jet coupled ECR ion source and the results for stable isotope beams and RIBs are reported.

2.
Org Biomol Chem ; 21(29): 5924-5928, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37409674

ABSTRACT

The synthesis of phenacyl-bis(dithiocarbamates) has been reported by metal-free trifunctionalization of phenylacetylene systems by following a one-pot two-step strategy. Phenyl acetylene undergoes molecular bromine-mediated oxidative bromination followed by nucleophilic substitution with the freshly prepared dithiocarbamate salt which is prepared by the prompt reaction of amine and CS2 in the presence of triethylamine base. A series of gem-bis(dithiocarbamates) are prepared using various secondary amines and phenylacetylene systems containing different substituents.

3.
Comput Biol Chem ; 102: 107806, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608615

ABSTRACT

Indoor propagation of airborne diseases is yet poorly understood. Here, we theoretically study a microscopic model based on the motions of virus particles in a respiratory microdroplet, responsible for airborne transmission of diseases, to understand their indoor propagation. The virus particles are driven by a driving force that mimics force due to gushing of air by devices like indoor air conditioning along with the gravity. A viral particle within the droplet experiences viscous drag due to the droplet medium, force due to interfacial tension at the droplet boundary, the thermal forces and mutual interaction forces with the other viral particles. We use Brownian Dynamics (BD) simulations and scaling arguments to study the motion of the droplet, given by that of the center of mass of the viral assembly. The BD simulations show that in presence of the gravity force alone, the time the droplet takes to reach the ground level, defined by the gravitational potential energy being zero, from a vertical height H,tf∼γ-0.1 dependence, where γ is the interfacial tension. In presence of the driving force of magnitude F0 and duration τ0, the horizontal propagation length, Ymax from the source increase linearly with τ0, where the slope is steeper for larger F0. Our scaling analysis explains qualitatively well the simulation observations and show long-distance transmission of airborne respiratory droplets in the indoor conditions due to F0 ∼ nano-dyne.


Subject(s)
Respiratory Aerosols and Droplets , Computer Simulation
4.
J Phys Chem Lett ; : 5109-5115, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35657602

ABSTRACT

Gene regulatory functions of noncanonical i-motif DNA are associated with dynamic i-motif formation in the cellular environment and pH variation. With atomistic simulations, we show the dramatic influence of solvent pH on the conformational dynamics of biologically relevant telomeric i-motif DNA coupled with protonation of cytosine bases in different conformations. We rationalized the pH-dependent dynamics and conformational variability of the i-motif in terms of base pairing and specific loop motions. The human telomeric i-motif is found to acquire various metastable folded conformations at pH values near the pKa of cytosine with the formation of a noncanonical C:C W:W trans base pair along with the hemiprotonated C:C+ pairs in the i-motif core. pH-dependent dynamics and the local solvent structure of i-motif DNA imply that the presence of a cosolvent or molecular crowding can promote i-motif formation in vivo by changing the conformational fluctuations and hydration state of the structure.

5.
Org Biomol Chem ; 20(17): 3491-3494, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35411902

ABSTRACT

Styrenes have been functionalized to produce styrenyl dithiocarbamates by a one-pot two-step procedure without using any metal catalysts. Styrene was transformed into a bromo-derivative, which undergoes a domino nucleophilic substitution followed by elimination in the presence of a dithiocarbamate anion and triethylamine to produce trans-styrenyl dithiocarbamates exclusively. The reaction shows a wide substrate scope and good yields of products.


Subject(s)
Metals , Styrenes , Catalysis , Molecular Structure
6.
Cancer Immunol Immunother ; 71(8): 1837-1849, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34999916

ABSTRACT

Talimogene Laherparepvec (OncoVEXmGMCSF), an oncolytic virus, immune checkpoint inhibitor anti-programmed cell death protein 1 (anti-PD1), and BRAF inhibition (BRAFi), are all clinically approved for treatment of melanoma patients and are effective through diverse mechanisms of action. Individually, these therapies also have an effect on the tumor immune microenvironment (TIME). Evaluating the combination effect of these three therapies on the TIME can help determine when combination therapy is most appropriate for further study. In this study, we use a transgenic murine melanoma model (Tyr::CreER; BRAFCA/+; PTENflox/flox), to evaluate the TIME in response to combinations of BRAFi, anti-PD1, and OncoVEXmGMCSF. We find that mice treated with the triple combination BRAFi + anti-PD1 + OncoVEXmGMCSF have decreased tumor growth compared to BRAFi alone and prolonged survival compared to control. Flow cytometry shows an increase in percent CD8 + /CD3 + cytotoxic T Lymphocytes (CTLs) and a decrease in percent FOXP3 + /CD4 + T regulatory cells (Tregs) in tumors treated with OncoVEXmGMCSF compared to mice not treated with OncoVEXmGMCSF. Immunogenomic analysis at 30d post-treatment shows an increase in Th1 and interferon-related genes in mice receiving OncoVEXmGMCSF + BRAFi. In summary, treatment with combination BRAFi + anti-PD1 + OncoVEXmGMCSF is more effective than any single treatment in controlling tumor growth, and groups receiving OncoVEXmGMCSF had more tumoral infiltration of CTLs and less intratumoral Tregs in the TIME. This study provides rational basis to combine targeted agents, oncolytic viral therapy, and checkpoint inhibitors in the treatment of melanoma.


Subject(s)
Antineoplastic Agents , Melanoma , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Antineoplastic Agents/therapeutic use , Immunologic Factors/therapeutic use , Immunotherapy , Melanoma/drug therapy , Mice , Proto-Oncogene Proteins B-raf/genetics , Tumor Microenvironment
7.
Chem Sci ; 12(15): 5390-5409, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-34168783

ABSTRACT

As genetic material, DNA not only carries genetic information by sequence, but also affects biological functions ranging from base modification to replication, transcription and gene regulation through its structural and dynamic properties and variations. The motion and structural properties of DNA involved in related biological processes are also multi-scale, ranging from single base flipping to local DNA deformation, TF binding, G-quadruplex and i-motif formation, TAD establishment, compartmentalization and even chromosome territory formation, just to name a few. The sequence-dependent physical properties of DNA play vital role in all these events, and thus it is interesting to examine how simple sequence information affects DNA and the formation of the chromatin structure in these different hierarchical orders. Accordingly, molecular simulations can provide atomistic details of interactions and conformational dynamics involved in different biological processes of DNA, including those inaccessible by current experimental methods. In this perspective, which is mainly based on our recent studies, we provide a brief overview of the atomistic simulations on how the hierarchical structure and dynamics of DNA can be influenced by its sequences, base modifications, environmental factors and protein binding in the context of the protein-DNA interactions, gene regulation and structural organization of chromatin. We try to connect the DNA sequence, the hierarchical structures of DNA and gene regulation.

8.
Sci Rep ; 11(1): 2809, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531581

ABSTRACT

Accurate prognostic biomarkers in early-stage melanoma are urgently needed to stratify patients for clinical trials of adjuvant therapy. We applied a previously developed open source deep learning algorithm to detect tumor-infiltrating lymphocytes (TILs) in hematoxylin and eosin (H&E) images of early-stage melanomas. We tested whether automated digital (TIL) analysis (ADTA) improved accuracy of prediction of disease specific survival (DSS) based on current pathology standards. ADTA was applied to a training cohort (n = 80) and a cutoff value was defined based on a Receiver Operating Curve. ADTA was then applied to a validation cohort (n = 145) and the previously determined cutoff value was used to stratify high and low risk patients, as demonstrated by Kaplan-Meier analysis (p ≤ 0.001). Multivariable Cox proportional hazards analysis was performed using ADTA, depth, and ulceration as co-variables and showed that ADTA contributed to DSS prediction (HR: 4.18, CI 1.51-11.58, p = 0.006). ADTA provides an effective and attainable assessment of TILs and should be further evaluated in larger studies for inclusion in staging algorithms.


Subject(s)
Image Processing, Computer-Assisted , Lymphocytes, Tumor-Infiltrating/pathology , Melanoma/mortality , Skin Neoplasms/mortality , Skin/pathology , Adult , Aged , Aged, 80 and over , Biopsy , Chemotherapy, Adjuvant , Clinical Decision-Making/methods , Deep Learning , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Male , Melanoma/diagnosis , Melanoma/pathology , Melanoma/therapy , Middle Aged , Neoplasm Staging , Patient Selection , Prognosis , ROC Curve , Retrospective Studies , Risk Assessment/methods , Skin/cytology , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Young Adult
9.
Biopolymers ; 111(10): e23396, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32858776

ABSTRACT

Restriction endonucleases protect bacterial cells against bacteriophage infection by cleaving the incoming foreign DNA into fragments. In presence of Mg2+ ions, EcoRV is able to cleave the DNA but not in presence of Ca2+ , although the protein binds to DNA in presence of both metal ions. We make an attempt to understand this difference using conformational thermodynamics. We calculate the changes in conformational free energy and entropy of conformational degrees of freedom, like DNA base pair steps and dihedral angles of protein residues in Mg2+ (A)-EcoRV-DNA complex compared to Ca2+ (S)-EcoRV-DNA complex using all-atom molecular dynamics (MD) trajectories of the complexes. We find that despite conformational stability and order in both complexes, the individual degrees of freedom behave differently in the presence of two different metal ions. The base pairs in cleavage region are highly disordered in Ca2+ (S)-EcoRV-DNA compared to Mg2+ (A)-EcoRV-DNA. One of the acidic residues ASP90, coordinating to the metal ion in the vicinity of the cleavage site, is conformationally destabilized and disordered, while basic residue LYS92 gets conformational stability and order in Ca2+ (S) bound complex than in Mg2+ (A) bound complex. The enhanced fluctuations hinder placement of the metal ion in the vicinity of the scissile phosphate of DNA. Similar loss of conformational stability and order in the cleavage region is observed by the replacement of the metal ion. Considering the placement of the metal ion near scissile phosphate as requirement for cleavage action, our results suggest that the changes in conformational stability and order of the base pair steps and the protein residues lead to cofactor sensitivity of the enzyme. Our method based on fluctuations of microscopic conformational variables can be applied to understand enzyme activities in other protein-DNA systems.


Subject(s)
DNA Cleavage , DNA/chemistry , DNA/metabolism , Deoxyribonucleases, Type II Site-Specific/metabolism , Magnesium/metabolism , Manganese/metabolism , Binding Sites , Catalysis , Deoxyribonucleases, Type II Site-Specific/chemistry , Deoxyribonucleases, Type II Site-Specific/genetics , Magnesium/chemistry , Manganese/chemistry , Models, Molecular , Protein Conformation , Substrate Specificity , Thermodynamics
10.
Chemistry ; 26(55): 12624-12631, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32557878

ABSTRACT

The design and construction of "thermodynamically stable" metal-organic frameworks (MOFs) that can survive in liquid water, boiling water, and acidic/basic solutions over a wide pH range is highly desirable for many practical applications, especially adsorption-based gas separations with obvious scalable preparations. Herein, a new thermodynamically stable Ni MOF, {[Ni(L)(1,4-NDC)(H2 O)2 ]}n (IITKGP-20; L=4,4'-azobispyridine; 1,4-NDC=1,4-naphthalene dicarboxylic acid; IITKGP stands for the Indian Institute of Technology Kharagpur), has been designed that displays moderate porosity with a BET surface area of 218 m2 g-1 and micropores along the [10-1] direction. As an alternative to a cost-intensive, cryogenic, high-pressure distillation process for the separation of hydrocarbons, MOFs have recently shown promise for such separations. Thus, towards an application standpoint, this MOF exhibits a higher uptake of C2 hydrocarbons over that of C1 hydrocarbon under ambient conditions, with one of the highest selectivities based on the ideal adsorbed solution theory (IAST) method. A combination of two strategies (the presence of stronger metal-N coordination of the spacer and the hydrophobicity of the aromatic moiety of the organic ligand) possibly makes the framework highly robust, even stable in boiling water and over a wide range of pH 2-10, and represents the first example of a thermodynamically stable MOF displaying a 2D structural network. Moreover, this material is easily scalable by heating the reaction mixture at reflux overnight. Because such separations are performed in the presence of water vapor and acidic gases, there is a great need to explore thermodynamically stable MOFs that retain not only structural integrity, but also the porosity of the frameworks.

11.
Front Cell Dev Biol ; 8: 614624, 2020.
Article in English | MEDLINE | ID: mdl-33585449

ABSTRACT

The ability to comprehensively profile proteins in intact tissues in situ is crucial for our understanding of health and disease. However, the existing methods suffer from low sensitivity and limited sample throughput. To address these issues, here we present a highly sensitive and multiplexed in situ protein analysis approach using cleavable fluorescent tyramide and off-the-shelf antibodies. Compared with the current methods, this approach enhances the detection sensitivity and reduces the imaging time by 1-2 orders of magnitude, and can potentially detect hundreds of proteins in intact tissues at the optical resolution. Applying this approach, we studied protein expression heterogeneity in a population of genetically identical cells, and performed protein expression correlation analysis to identify co-regulated proteins. We also profiled >6,000 neurons in a human formalin-fixed paraffin-embedded (FFPE) hippocampus tissue. By partitioning these neurons into varied cell clusters based on their multiplexed protein expression profiles, we observed different sub-regions of the hippocampus consist of neurons from distinct clusters.

12.
Clin Cancer Res ; 26(5): 1126-1134, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31636101

ABSTRACT

PURPOSE: Biomarkers for disease-specific survival (DSS) in early-stage melanoma are needed to select patients for adjuvant immunotherapy and accelerate clinical trial design. We present a pathology-based computational method using a deep neural network architecture for DSS prediction. EXPERIMENTAL DESIGN: The model was trained on 108 patients from four institutions and tested on 104 patients from Yale School of Medicine (YSM, New Haven, CT). A receiver operating characteristic (ROC) curve was generated on the basis of vote aggregation of individual image sequences, an optimized cutoff was selected, and the computational model was tested on a third independent population of 51 patients from Geisinger Health Systems (GHS). RESULTS: Area under the curve (AUC) in the YSM patients was 0.905 (P < 0.0001). AUC in the GHS patients was 0.880 (P < 0.0001). Using the cutoff selected in the YSM cohort, the computational model predicted DSS in the GHS cohort based on Kaplan-Meier (KM) analysis (P < 0.0001). CONCLUSIONS: The novel method presented is applicable to digital images, obviating the need for sample shipment and manipulation and representing a practical advance over current genetic and IHC-based methods.


Subject(s)
Deep Learning/standards , Image Processing, Computer-Assisted/standards , Melanoma/mortality , Melanoma/pathology , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/pathology , Staining and Labeling/methods , Adult , Aged , Aged, 80 and over , Algorithms , Area Under Curve , Biopsy/methods , Disease Progression , Female , Follow-Up Studies , Humans , Image Processing, Computer-Assisted/methods , Male , Middle Aged , Neural Networks, Computer , Retrospective Studies , Risk Factors , Survival Rate , Young Adult
13.
Angew Chem Int Ed Engl ; 58(44): 15829-15833, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31478328

ABSTRACT

The search for main-group element-based radicals is one of the main research topics in contemporary chemistry because of their fascinating chemical and physical properties. The Group 15 element-centered radicals mainly feature a V-shaped two coordinate structure, with a couple of radical cations featuring trigonal tricoordinated geometry. Now, nontrigonal compounds R3 E (E=P, As, Sb) were successfully synthesized by introducing a new rigid tris-amide ligand. The selective one-electron reduction of R3 E afforded the first stable tricoordinate pnictogen-centered radical anion salts; the pnictogen atoms retain planar T-shaped structures. EPR spectroscopy and calculations reveal that the spin density mainly resides at the p orbitals of the pnictogen atoms, which is perpendicular to the N3 E planes.

14.
Phys Chem Chem Phys ; 21(38): 21549-21560, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31536074

ABSTRACT

Repetitive cytosine rich i-motif forming sequences are abundant in the telomere, centromere and promoters of several oncogenes and in some instances are known to regulate transcription and gene expression. The in vivo existence of i-motif structures demands further insight into the factors affecting their formation and stability and development of better understanding of their gene regulatory functions. Most prior studies characterizing the conformational dynamics of i-motifs are based on i-motif forming synthetic constructs. Here, we present a systematic study on the stability and structural properties of biologically relevant i-motifs of telomeric and centromeric repeat fragments. Our results based on molecular dynamics simulations and quantum chemical calculations indicate that along with base pairing interactions within the i-motif core the overall folded conformation is associated with the stable C-HO sugar "zippers" in the narrow grooves and structured water molecules along the wide grooves. The stacked geometry of the hemi-protonated cytosine pairs within the i-motif core is mainly governed by the repulsive base stacking interaction. The loop sequence can affect the structural dynamics of the i-motif by altering the loop motion and backbone conformation. Overall this study provides microscopic insight into the i-motif structure that will be helpful to understand the structural aspect of mechanisms of gene regulation by i-motif DNA.


Subject(s)
DNA/chemistry , Intercalating Agents/chemistry , Nucleotide Motifs , Solvents/chemistry , Telomere/chemistry , Base Pairing , Cytosine/chemistry , Hydrogen Bonding , Molecular Dynamics Simulation
15.
Angew Chem Int Ed Engl ; 58(1): 130-133, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30407705

ABSTRACT

The emergence of unnatural DNA bases provides opportunities to demystify the mechanisms by which DNA polymerases faithfully decode chemical information on the template. It was previously shown that two unnatural cytosine bases (termed "M-fC" and "I-fC"), which are chemical labeling adducts of the epigenetic base 5-formylcytosine, can induce C-to-T transition during DNA amplification. However, how DNA polymerases recognize such unnatural cytosine bases remains enigmatic. Herein, crystal structures of unnatural cytosine bases pairing to dA/dG in the KlenTaq polymerase-host-guest complex system and pairing to dATP in the KlenTaq polymerase active site were determined. Both M-fC and I-fC base pair with dA/dATP, but not with dG, in a Watson-Crick geometry. This study reveals that the formation of the Watson-Crick geometry, which may be enabled by the A-rule, is important for the recognition of unnatural cytosines.


Subject(s)
Cytosine/chemistry , DNA-Directed DNA Polymerase/chemistry , DNA/chemistry , Thymine/chemistry , Humans , Molecular Structure
16.
J Chem Theory Comput ; 14(12): 6679-6689, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30403861

ABSTRACT

Methylation of cytosine is the common epigenetic modification in genomes ranging from bacteria to mammals, and aberrant methylation leads to human diseases including cancer. Recognition of a cognate DNA sequence by DNA methyltransferases and flipping of a target base into the enzyme active site pocket are the key steps in DNA methylation. Using molecular dynamics simulations and enhanced sampling techniques here we elucidate the role of conformational fluctuations of protein and active or passive involvement of protein elements that mediate base flipping and formation of the closed catalytic complex. The free energy profiles for the flipping of target cytosine into the enzyme active site support the major groove base eversion pathway; and the results show that the closed state of enzyme increases the free energy barrier, whereas the open state reduces it. We found that the interactions of the key loop residues of protein with cognate DNA altered the protein motions, and modulation of protein fluctuations relates to the closed catalytic complex formation. Methylation of cytosine in the active site of the closed complex destabilizes the interactions of catalytic loop residues with cognate DNA and reduces the stability of the closed state. Our study provides microscopic insights on the base flipping mechanism coupled with enzyme's loop motions and provides evidence for the role of conformational fluctuations of protein in the enzyme-catalyzed DNA processing mechanism.


Subject(s)
DNA Methylation , DNA-Cytosine Methylases/chemistry , DNA-Cytosine Methylases/metabolism , DNA/chemistry , DNA/metabolism , Molecular Dynamics Simulation , Base Sequence , DNA/genetics , Entropy , Nucleic Acid Conformation , Protein Conformation
17.
Chem Sci ; 9(11): 2909-2917, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29732074

ABSTRACT

The ability to profile transcripts and genomic loci comprehensively in single cells in situ is essential to advance our understanding of normal physiology and disease pathogenesis. Here we report a highly multiplexed single-cell in situ RNA and DNA analysis approach using bioorthogonal cleavable fluorescent oligonucleotides. In this approach, oligonucleotides tethered to fluorophores through an azide-based cleavable linker are used to detect their nucleic acids targets by in situ hybridization. After fluorescence imaging, the fluorophores in the whole specimen are efficiently cleaved in 30 minutes without loss of RNA or DNA integrity. Through reiterative cycles of hybridization, imaging, and cleavage, this method has the potential to quantify hundreds to thousands of different RNA species or genomic loci in single cells in situ at the single-molecule sensitivity. Applying this approach, we demonstrate that different nucleic acids can be detected in each hybridization cycle by multi-color staining, and at least ten continuous hybridization cycles can be carried out in the same specimen. We also show that the integrated single-cell in situ analysis of DNA, RNA and protein can be achieved using cleavable fluorescent oligonucleotides combined with cleavable fluorescent antibodies. This highly multiplexed imaging platform will have wide applications in systems biology and biomedical research.

18.
J Biol Chem ; 293(13): 4940-4951, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29378846

ABSTRACT

In highly polarized cells such as neurons, compartmentalization of mRNA and of local protein synthesis enables remarkably fast, precise, and local responses to external stimuli. These responses are highly important for neuron growth cone guidance, synapse formation, and regeneration following injury. Because an altered spatial distribution of mRNA can result in mental retardation or neurodegenerative diseases, subcellular transcriptome analysis of neurons could be a useful tool for studying these conditions, but current techniques, such as in situ hybridization, bulk microarray, and RNA-Seq, impose tradeoffs between spatial resolution and multiplexing. To obtain a comprehensive analysis of the cell body versus neurite transcriptome from the same neuron, we have recently developed a label-free, single-cell nanobiopsy platform based on scanning ion conductance microscopy that uses electrowetting within a quartz nanopipette to extract cellular material from living cells with minimal disruption of the cellular membrane and milieu. In this study, we used this platform to collect samples from the cell bodies and neurites of human neurons and analyzed the mRNA pool with multiplex RNA sequencing. The minute volume of a nanobiopsy sample allowed us to extract samples from several locations in the same cell and to map the various mRNA species to specific subcellular locations. In addition to previously identified transcripts, we discovered new sets of mRNAs localizing to neurites, including nuclear genes such as Eomes and Hmgb3 In summary, our single-neuron nanobiopsy analysis provides opportunities to improve our understanding of intracellular mRNA transport and local protein composition in neuronal growth, connectivity, and function.


Subject(s)
Gene Expression Profiling , Induced Pluripotent Stem Cells/metabolism , Neurites/metabolism , Neurodegenerative Diseases/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Messenger/biosynthesis , Sequence Analysis, RNA , Biopsy/methods , HMGB3 Protein/biosynthesis , HMGB3 Protein/genetics , Humans , Induced Pluripotent Stem Cells/pathology , Neurites/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , T-Box Domain Proteins/biosynthesis , T-Box Domain Proteins/genetics
19.
Proteins ; 86(3): 370-378, 2018 03.
Article in English | MEDLINE | ID: mdl-29265504

ABSTRACT

We perform molecular dynamics simulation studies on interaction between bacterial proteins: an outer-membrane protein STY3179 and a yfdX protein STY3178 of Salmonella Typhi. STY3179 has been found to be involved in bacterial adhesion and invasion. STY3178 is recently biophysically characterized. It is a soluble protein having antibiotic binding and chaperon activity capabilities. These two proteins co-occur and are from neighboring gene in Salmonella Typhi-occurrence of homologs of both STY3178 and STY3179 are identified in many Gram-negative bacteria. We show using homology modeling, docking followed by molecular dynamics simulation that they can form a stable complex. STY3178 belongs to aqueous phase, while the beta barrel portion of STY3179 remains buried in DPPC bilayer with extra-cellular loops exposed to water. To understand the molecular basis of interaction between STY3178 and STY3179, we compute the conformational thermodynamics which indicate that these two proteins interact through polar and acidic residues belonging to their interfacial region. Conformational thermodynamics results further reveal instability of certain residues in extra-cellular loops of STY3179 upon complexation with STY3178 which is an indication for binding with host cell protein laminin.


Subject(s)
Bacterial Proteins/chemistry , Molecular Dynamics Simulation , Protein Conformation , Thermodynamics , Bacterial Proteins/metabolism , Binding Sites , Models, Molecular , Protein Binding , Salmonella typhi/metabolism , Salmonella typhi/pathogenicity , Virulence
20.
Chemistry ; 24(28): 7083-7091, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29194810

ABSTRACT

Single-cell proteomic analysis is crucial to advance our understanding of normal physiology and disease pathogenesis. The comprehensive protein profiling in individual cells of a heterogeneous sample can provide new insights into many important biological issues, such as the regulation of inter- and intracellular signaling pathways or the varied cellular compositions of normal and diseased tissues. With highly multiplexed molecular imaging of many different protein biomarkers in patient biopsies, diseases can be accurately diagnosed to guide the selection of the ideal treatment. In this Minireview, we will describe the recent technological advances of single-cell proteomic assays, discuss their advantages and limitations, highlight their applications in biology and precision medicine, and present the current challenges and potential solutions.


Subject(s)
Proteins/analysis , Biomarkers , Humans , Mass Spectrometry , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...