Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ERJ Open Res ; 9(3)2023 May.
Article in English | MEDLINE | ID: mdl-37313399

ABSTRACT

Background: Animal models using intratracheal instillation show that elastase, unopposed by α1-antitrypsin (AAT), causes alveolar damage and haemorrhage associated with emphysematous changes. The aim of the present study was to characterise any relationship between alveolar haemorrhage and human AAT deficiency (AATD) using bronchoalveolar lavage (BAL) and lung explant samples from AATD subjects. Methods: BAL samples (17 patients, 15 controls) were evaluated for free haem (iron protoporphyrin IX) and total iron concentrations. Alveolar macrophage activation patterns were assessed using RNA sequencing and validated in vitro using haem-stimulated, monocyte-derived macrophages. Lung explants (seven patients, four controls) were assessed for iron sequestration protein expression patterns using Prussian blue stain and ferritin immunohistochemistry, as well as ferritin iron imaging and elemental analysis by transmission electron microscopy. Tissue oxidative damage was assessed using 8-hydroxy-2'-deoxyguanosine immunohistochemistry. Results: BAL collected from AATD patients showed significantly elevated free haem and total iron concentrations. Alveolar and interstitial macrophages in AATD explants showed elevated iron and ferritin accumulation in large lysosomes packed by iron oxide cores with degraded ferritin protein cages. BAL macrophage RNA sequencing showed innate pro-inflammatory activation, replicated in vitro by haemin exposure, which also triggered reactive oxygen species generation. AATD explants showed massive oxidative DNA damage in both lung epithelial cells and macrophages. Conclusions: BAL and tissue markers of alveolar haemorrhage, together with molecular and cellular evidence of macrophage innate pro-inflammatory activation and oxidative damage, are consistent with free haem stimulation. Overall, this initial study provides evidence for a pathogenetic role of elastase-induced alveolar haemorrhage in AATD emphysema.

3.
Hepatol Commun ; 6(9): 2354-2367, 2022 09.
Article in English | MEDLINE | ID: mdl-35621045

ABSTRACT

Alpha-1 antitrypsin (AAT) deficiency (AATD) is an inherited disease caused by mutations in the serpin family A member 1 (SERPINA1, also known as AAT) gene. The most common variant, PI*Z (Glu342Lys), causes accumulation of aberrantly folded AAT in the endoplasmic reticulum (ER) of hepatocytes that is associated with a toxic gain of function, hepatocellular injury, liver fibrosis, and hepatocellular carcinoma. The unfolded protein response (UPR) is a cellular response to improperly folded proteins meant to alleviate ER stress. It has been unclear whether PI*Z AAT elicits liver cell UPR, due in part to limitations of current cellular and animal models. This study investigates whether UPR is activated in a novel human PI*Z AAT cell line and a new PI*Z human AAT (hAAT) mouse model. A PI*Z AAT hepatocyte cell line (Huh7.5Z) was established using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing of the normal ATT (PI*MM) gene in the Huh7.5 cell line. Additionally, novel full-length genomic DNA PI*Z hAAT and PI*M hAAT transgenic mouse models were established. Using these new models, UPR in Huh7.5Z cells and PI*Z mice were comprehensively determined. Robust activation of UPR was observed in Huh7.5Z cells compared to Huh7.5 cells. Activated caspase cascade and apoptosis markers, increased chaperones, and autophagy markers were also detected in Z hepatocytes. Selective attenuation of UPR signaling branches was observed in PI*Z hAAT mice in which the protein kinase R-like ER kinase and inositol-requiring enzyme1α branches were suppressed while the activating transcription factor 6α branch remained active. This study provides direct evidence that PI*Z AAT triggers canonical UPR and that hepatocytes survive pro-apoptotic UPR by selective suppression of UPR branches. Our data improve understanding of underlying pathological molecular mechanisms of PI*Z AATD liver disease.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , alpha 1-Antitrypsin Deficiency , Animals , Carcinoma, Hepatocellular/genetics , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Unfolded Protein Response/genetics , alpha 1-Antitrypsin Deficiency/genetics
4.
Front Immunol ; 11: 574410, 2020.
Article in English | MEDLINE | ID: mdl-33329539

ABSTRACT

Alpha 1 antitrypsin deficiency (AATD) is an autosomal co-dominant disorder characterized by a low level of circulating AAT, which significantly reduces protection for the lower airways against proteolytic burden caused by neutrophils. Neutrophils, which are terminally differentiated innate immune cells and play a critical role to clear pathogens, accumulate excessively in the lung of AATD individuals. The neutrophil burden in AATD individuals increases the risk for early-onset destructive lung diseases by producing neutrophil products such as reactive oxygen radicals and various proteases. The level of AAT in AATD individuals is not sufficient to inhibit the activity of neutrophil chemotactic factors such as CXCL-8 and LTB4, which could lead to alveolar neutrophil accumulation in AATD individuals. However, as neutrophils have a short lifespan, and apoptotic neutrophils are rapidly cleared by alveolar macrophages that outnumber the apoptotic neutrophils in the pulmonary alveolus, the increased chemotaxis activity does not fully explain the persistent neutrophil accumulation and the resulting chronic inflammation in AATD individuals. Here, we propose that the ability of alveolar macrophages to clear apoptotic neutrophils is impaired in AATD individuals and it could be the main driver to cause neutrophil accumulation in their lung. This study demonstrates that Z-AAT variant significantly increases the expression of pro-inflammatory cytokines including CXCL-8, CXCL1, LTB4, and TNFα in LPS-treated macrophages. These cytokines play a central role in neutrophil recruitment to the lung and in clearance of apoptotic neutrophils by macrophages. Our result shows that LPS treatment significantly reduces the efferocytosis ability of macrophages with the Z-AAT allele by inducing TNFα expression. We incubated monocyte-derived macrophages (MDMs) with apoptotic neutrophils and found that after 3 h of co-incubation, the expression level of CXCL-8 is reduced in M-MDMs but increased in Z-MDMs. This result shows that the expression of inflammatory cytokines could be increased by impaired efferocytosis. It indicates that the efferocytosis ability of macrophages plays an important role in regulating cytokine expression and resolving inflammation. Findings from this study would help us better understand the multifaceted effect of AAT on regulating neutrophil balance in the lung and the underlying mechanisms.


Subject(s)
Apoptosis/immunology , Macrophages/immunology , Neutrophils/immunology , Phagocytosis/immunology , alpha 1-Antitrypsin Deficiency/immunology , Chemotaxis, Leukocyte , Cytokines/metabolism , Genotype , Humans , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Neutrophils/metabolism , Phagocytosis/drug effects , Phagocytosis/genetics , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/immunology , alpha 1-Antitrypsin Deficiency/genetics
5.
Microbiology (Reading) ; 165(6): 662-667, 2019 06.
Article in English | MEDLINE | ID: mdl-30422107

ABSTRACT

The contribution of N-acetylneuraminate scavenging to the nutrition of Mycoplasma alligatoris was examined. The wild-type grew substantially faster (P<0.01) than the mutant strains that were unable either to liberate (extracellular NanI- mutants) or to catabolize (NanA- mutants) N-acetylneuraminate from glycoconjugates in minimal SP-4 medium supplemented only with serum, but the growth of sialidase-negative mutants could not be restored to wild-type rate simply by adding unconjugated sialic acid to the culture medium. In 1 : 1 growth competition assays the wild-type was recovered in >99-fold excess of a sialidase-negative mutant after co-culture on pulmonary fibroblasts in serum-free RPMI 1640 medium, even with supplemental glucose. The advantage of nutrient scavenging via this mechanism in a complex glycan-rich environment may help to balance the expected selective disadvantage conferred by the pathogenic effects of mycoplasmal sialidase in an infected host.


Subject(s)
Mycoplasma/metabolism , N-Acetylneuraminic Acid/metabolism , Neuraminidase/metabolism , Culture Media/chemistry , Mutagenesis, Insertional , Mutation , Mycoplasma/enzymology , Mycoplasma/genetics , Mycoplasma/growth & development , N-Acetylneuraminic Acid/chemistry , Neuraminidase/genetics , Substrate Specificity
6.
Vet Microbiol ; 157(1-2): 91-5, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22197303

ABSTRACT

Reannotation of the pathogenic Mycoplasma gallisepticum strain R(low) genome identified the hypothetical gene MGA_0329 as a homolog of the sialidase gene MS53_0199 of Mycoplasma synoviae strain MS53. Potent sialidase activity was subsequently quantitated in several M. gallisepticum strains. Because sialidase activity levels correlate significantly with differing M. synoviae strain virulence, we hypothesized this enzyme may also influence the virulence of M. gallisepticum. MGA_0329 was disrupted in strain R(low) to create mutants 6, 358 and P1C5, which resulted in the loss of sialidase activity in all three mutants. Chickens infected with the knockout mutants had significantly less severe (P<0.05) tracheal lesions and tracheal mucosal thickening than chickens infected with equal doses of strain R(low). Significantly fewer (P<0.05) CCU especially of strains 6 and P1C5 were recovered at necropsy. Mini-Tn4001tet plasmid pTF20 carrying a wild-type copy of MGA_0329 with its native promoter was used to complement the genetic lesion in strain P1C5. Three clones derived from P1C5, each having one copy of MGA_0329 stably transposed into a different site in its genome, expressed sialidase restored to wild-type activity levels (1.58×10(-8)U/CFU). Complementation of P1C5 with MGA_0329 did not restore it to wild-type levels of virulence, indicating that the contribution of sialidase to M. gallisepticum virulence is not straightforward.


Subject(s)
Mycoplasma Infections/veterinary , Mycoplasma gallisepticum/enzymology , Mycoplasma gallisepticum/pathogenicity , Neuraminidase/genetics , Virulence , Animals , Chickens/microbiology , Gene Knockout Techniques , Genetic Complementation Test , Mutagenesis, Insertional , Mycoplasma Infections/microbiology , Mycoplasma Infections/pathology , Mycoplasma gallisepticum/genetics , Mycoplasma synoviae/enzymology
7.
Carcinogenesis ; 27(4): 874-81, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16377807

ABSTRACT

During fetal development, the liver serves as the primary hematopoietic organ in which hematopoietic stem cells (HSC) comprise a large proportion of hepatic cell populations. Because HSC are capable of initiating long-term hematopoiesis, injury to these cells during pregnancy may play a role in the development of hematopoietic disorders manifested after birth. Of interest is the role of genetic injury to fetal HSC in the etiology of the infant acute leukemias, which are characterized by chromosomal rearrangements in the 11q23 region involving the mixed lineage leukemia (MLL) gene. These gene fusions also occur in leukemias in adults following chemotherapy with etoposide and other inhibitors of DNA topoisomerase II. We used etoposide as a model compound to determine the sensitivity of human fetal HSC to DNA damage and to determine whether we could induce MLL rearrangements in cultured human fetal HSC. Exposure of HSC to etoposide resulted in a dose-dependent loss of viability, with effects observed at low nanomolar concentrations. DNA strand breaks were observed on exposure to 140 nM etoposide, and higher etoposide concentrations stimulated an increase in early lymphoid populations and elicited G2/M cell cycle arrest. Immunophenotyping of MLL translocations revealed a significant increase in positive flow cytometry events at low etoposide concentrations and were consistent with MLL recombination. MLL translocations were confirmed using fluorescent in situ hybridization. In vitro inhibition of DNA topoisomerase II was observed at >or=25 microM etoposide, but was not evident at lower etoposide concentrations associated with DNA damage. Our data indicate that low acute doses of etoposide can cause DNA strand breaks and chromosomal rearrangements involving MLL in human fetal HSC. Ultimately, such injury may have ramifications with regards to transplacental exposures to environmental chemicals linked to the etiology of infant acute leukemias.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Etoposide/pharmacology , Gene Rearrangement/drug effects , Hematopoietic Stem Cells/drug effects , Myeloid-Lymphoid Leukemia Protein/genetics , Cell Culture Techniques , Cell Cycle/drug effects , Cell Survival/drug effects , DNA Damage , Dose-Response Relationship, Drug , Female , Fetus , Histone-Lysine N-Methyltransferase , Humans , Leukemia/chemically induced , Maternal-Fetal Exchange , Pregnancy
8.
Biochem Pharmacol ; 69(1): 105-12, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15588719

ABSTRACT

During fetal development, the liver serves as the primary hematopoietic organ in which hematopoietic stem cells (HSC) comprise a large proportion of hepatic cell populations. Because HSC are capable of initiating long-term hematopoiesis, injury to these cells may have ramifications with regard to the etiology of blood-borne diseases. In the current study, we examined the effects of 4-hydroxynonenal (4-HNE), a mutagenic alpha,beta-unsaturated aldehyde that can be produced in utero, on HSC proliferation, differentiation, viability and apoptosis. Exposure of HSC to acute single doses of 4-HNE as low as 1 nM inhibited HSC proliferation. Because 4-HNE rapidly disappears from culture media, a multiple dosing regime was also employed to approximate short-term steady state 4-HNE concentrations relevant to physiological oxidative stress. 4-Hydroxynonenal steady state concentrations as low as 1 microM altered HSC differentiation pathways, but did not affect apoptosis or cause cell death. In contrast, exposure to steady state 5 microM 4-HNE elicited a loss in viability, and increased the rate of apoptosis in total HSC populations. Collectively, our data indicate that cellular levels of 4-HNE associated with a low level of oxidative stress cause a loss of proliferation and viability and alter differentiation pathways in human fetal HSC.


Subject(s)
Aldehydes/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Hematopoietic Stem Cells/drug effects , Liver/drug effects , Cell Differentiation/physiology , Cells, Cultured , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , Humans , Liver/cytology , Liver/physiology , Signal Transduction/drug effects , Signal Transduction/physiology
9.
Biol Bull ; 207(2): 141-6, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15501855

ABSTRACT

Tentacles from representatives of all four classes of the phylum Cnidaria were examined using antibodies against the neuropeptides FMRFamide and RFamide to reveal the organization of neurons and nerve nets associated with cnidocytes. The tentacles of all species examined contained FMRFamide- or RFamide-immunoreactive neurons, in varying densities. In representatives from the Scyphozoa, Hydrozoa, and Cubozoa, the FMRFamide-immunoreactive neurons formed plexuses at the base of the cnidocyte assemblages; in anthozoans, the absence of discrete assemblies of cnidocytes precluded visual co-localization of cnidocytes and immunoreactive neurons. In all four classes, immunoreactive sensory cells connected these peptidergic nerve nets to the surface of the tentacle. These findings suggest that members of all four cnidarian classes share a common organizational pattern, and it is proposed that this peptidergic innervation may be involved in the chemosensory regulation of cnidocyte discharge.


Subject(s)
Animal Structures/innervation , Cnidaria/anatomy & histology , Nerve Net/cytology , Animal Structures/anatomy & histology , Animals , Atlantic Ocean , FMRFamide/metabolism , Immunohistochemistry , Microscopy, Confocal , Microscopy, Fluorescence , Neuropeptides/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...