Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166324, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34954343

ABSTRACT

BACKGROUND: Myelin-associated glycoprotein (MAG) is a key molecule involved in the nurturing effect of myelin on ensheathed axons. MAG also inhibits axon outgrowth after injury. In preclinical stroke models, administration of a function-blocking anti-MAG monoclonal antibody (mAb) aimed to improve axon regeneration demonstrated reduced lesion volumes and a rapid clinical improvement, suggesting a mechanism of immediate neuroprotection rather than enhanced axon regeneration. In addition, it has been reported that antibody-mediated crosslinking of MAG can protect oligodendrocytes (OLs) against glutamate (Glu) overload by unknown mechanisms. PURPOSE: To unravel the molecular mechanisms underlying the protective effect of anti-MAG therapy with a focus on neuroprotection against Glu toxicity. RESULTS: MAG activation (via antibody crosslinking) triggered the clearance of extracellular Glu by its uptake into OLs via high affinity excitatory amino acid transporters. This resulted not only in protection of OLs but also nearby neurons. MAG activation led to a PKC-dependent activation of factor Nrf2 (nuclear-erythroid related factor-2) leading to antioxidant responses including increased mRNA expression of metabolic enzymes from the glutathione biosynthetic pathway and the regulatory chain of cystine/Glu antiporter system xc- increasing reduced glutathione (GSH), the main antioxidant in cells. The efficacy of early anti-MAG mAb administration was demonstrated in a preclinical model of excitotoxicity induced by intrastriatal Glu administration and extended to a model of Experimental Autoimmune Encephalitis showing axonal damage secondary to demyelination. CONCLUSIONS: MAG activation triggers Glu uptake into OLs under conditions of Glu overload and induces a robust protective antioxidant response.


Subject(s)
Antibodies, Monoclonal/immunology , Glutamic Acid/metabolism , Myelin-Associated Glycoprotein/metabolism , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Axons/metabolism , Cells, Cultured , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Glutamic Acid/administration & dosage , Glutamic Acid/pharmacology , Glutathione/metabolism , Mice , Mice, Inbred C57BL , Myelin-Associated Glycoprotein/immunology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neurons/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Oxidative Stress/drug effects , Protein Kinase C/metabolism , Rats , Receptors, Glutamate/metabolism , Signal Transduction/drug effects
2.
Front Immunol ; 12: 682612, 2021.
Article in English | MEDLINE | ID: mdl-34354703

ABSTRACT

Currently there is increasing attention on the modulatory effects of benzodiazepines on the immune system. Here, we evaluate how Diazepam (DZ) affects both innate and adaptive immunity. We observed that treatment with DZ and Lipopolysaccharide (LPS) on macrophages or dendritic cells (DCs) induced a defective secretion of IL-12, TNF-α, IL-6 and a lesser expression of classical activation markers as NO production and CD40 in comparison with LPS condition. More importantly, mice pre-treated with DZ and then challenged to LPS induced-septic shock showed reduced death. The DZ treatment shifted the LPS-induced pro-inflammatory cytokine production of peritoneal cells (PCs) to an anti-inflammatory profile commanded by IL-10. In agreement with this, DZ treatment prevented LPS-induced DC ability to initiate allogeneic Th1 and Th17 responses in vitro when compared with LPS-matured DC. Since these inflammatory responses are the key in the development of the experimental autoimmune encephalomyelitis (EAE), we treated EAE mice preventively with DZ. Mice that received DZ showed amelioration of clinical signs and immunological parameters of the disease. Additionally, DZ reduced the release of IFN-γ and IL-17 by splenocytes from untreated sick mice in vitro. For this reason, we decided to treat diseased mice therapeutically with DZ when they reached the clinical score of 1. Most importantly, this treatment ameliorated clinical signs, reduced the MOG-specific inflammatory cytokine production and prevented axonal damage. Altogether, these results indicate that DZ is a potent immunomodulator capable of controlling undesired innate and adaptive immune responses, both at the beginning of these responses and also once they have started.


Subject(s)
Adaptive Immunity/drug effects , Anti-Inflammatory Agents/pharmacology , Diazepam/pharmacology , Encephalomyelitis, Autoimmune, Experimental/immunology , Immunity, Innate/drug effects , Immunomodulation/drug effects , Animals , Biomarkers , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/diagnosis , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Immunophenotyping , Lipopolysaccharides/adverse effects , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Severity of Illness Index , Shock, Septic/drug therapy , Shock, Septic/etiology , Shock, Septic/metabolism , Shock, Septic/mortality
3.
Cell Immunol ; 280(1): 50-60, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23261829

ABSTRACT

The B subunit of Escherichia coli heat-labile enterotoxin (LTB) acts as efficient mucosal carrier for conjugated antigens. We expressed two heterologous proteins using E. coli as a host: a hybrid consisting of LTB and the A, B and C domain of synapsin (LTBABC) and the separated ABC peptide of this synaptic protein. Refolded LTBABC and LTB bound to the GM1 receptor and internalized into CHO-K1(GM1+) cells. LTBABC showed enhanced solubility and cell binding ability respect to the former hybrid LTBSC. Several oral doses of LTBABC were administered to rats with experimental autoimmune encephalomyelitis (EAE) from induction to the acute stage of the disease. This treatment decreased disease severity, delayed type hypersensitivity reaction and lymph node cell proliferation stimulated by myelin basic protein. Amelioration of EAE was also associated with modulation of the Th1/Th2 cytokine ratio, increased TGF-ß secretion in mesenteric lymph nodes as well as expansion of CD4(+)CD25(+)Foxp3(+) regulatory T cell population. These results indicate that the fusion protein LTBABC is suitable for further exploration of its therapeutic effect on EAE development.


Subject(s)
Bacterial Toxins/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Enterotoxins/therapeutic use , Escherichia coli Proteins/therapeutic use , Synapsins/therapeutic use , Animals , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , CHO Cells/drug effects , CHO Cells/metabolism , Cattle , Cricetinae , Drug Evaluation, Preclinical , Endocytosis , Enterotoxins/chemistry , Enterotoxins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Female , G(M1) Ganglioside/metabolism , Lymphocyte Activation/drug effects , Lymphokines/metabolism , Male , Myelin Basic Protein/immunology , Myelin Basic Protein/toxicity , Peptide Fragments/chemistry , Peptide Fragments/therapeutic use , Protein Denaturation , Protein Folding , Protein Structure, Tertiary , Random Allocation , Rats , Rats, Wistar , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/therapeutic use , Single-Blind Method , Structure-Activity Relationship , Synapsins/chemistry , Synapsins/genetics , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
4.
J Neuroimmunol ; 242(1-2): 16-25, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22138356

ABSTRACT

We previously found that the preventive oral administration of a hybrid consisting of the C domain of synapsin and the B subunit of E. coli heat-labile enterotoxin (LTBSC) efficiently suppresses experimental autoimmune encephalomyelitis (EAE) development in rats. We investigated the effect of LTBSC on cytokine expression and on regulatory T (Treg) cells in rats with myelin induced EAE. LTBSC treatment increased the frequency of CD4(+)FoxP3(+) Treg cells in lymph nodes prior to challenge and in the EAE acute stage. LTBSC also up-regulated the expression of anti-inflammatory Th2/Th3 cytokines and diminished myelin basic protein-specific Th1 and Th17 cell responses in lymph nodes. CD4(+)CD25(+) Treg cells from LTBSC treated rats showed stronger suppressive properties than Treg cells from controls in vitro. Our observations indicate that LTBSC is a useful agent for modulating the autoimmune responses in EAE.


Subject(s)
Bacterial Toxins/administration & dosage , Cytokines/biosynthesis , Encephalomyelitis, Autoimmune, Experimental/immunology , Enterotoxins/administration & dosage , Escherichia coli Proteins/administration & dosage , Escherichia coli Vaccines/administration & dosage , Lymphocyte Activation/immunology , Peptide Fragments/physiology , Synapsins/physiology , T-Lymphocytes, Regulatory/immunology , Animals , Cattle , Cells, Cultured , Down-Regulation/genetics , Down-Regulation/immunology , Encephalomyelitis, Autoimmune, Experimental/microbiology , Encephalomyelitis, Autoimmune, Experimental/pathology , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Vaccines/genetics , Escherichia coli Vaccines/immunology , Female , Inflammation Mediators/metabolism , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymph Nodes/microbiology , Lymphocyte Activation/genetics , Male , Myelin Basic Protein/antagonists & inhibitors , Peptide Fragments/genetics , Random Allocation , Rats , Rats, Wistar , Synapsins/genetics , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/microbiology , Up-Regulation/genetics , Up-Regulation/immunology
5.
J Neurosci Res ; 87(10): 2273-81, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19267420

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease with similarities to multiple sclerosis that requires the activation of auto reactive T cells that infiltrate the central nervous system. In previous studies we have shown that intraperitoneal administration of synaptosomal antigens could suppress EAE. Herein we examined the effect in this animal model of a fusion protein comprising the C domain of synapsin Ia and the B subunit of Escherichia coli heat-labile enterotoxin (LTBSC). Oral administration to rats of low amounts of LTBSC induced immunological systemic tolerance to the encephalitogenic myelin basic protein. Treatment with LTBSC prior to EAE induction diminished disease incidence, DTH reaction to myelin basic protein, and central nervous system inflammation. LTBSC treatment also reduced the specific T-cell proliferative response to myelin basic protein, decreased nitric oxide production, and augmented arginase activity by peritoneal macrophages. All animals challenged for EAE developed antibody response specific for myelin basic protein, but rats treated with LTBSC showed a lower IgG2b/IgG1 ratio, indicating a shift to a Th2-type milieu. The data presented here suggest that well-conserved synapsin peptides conjugated to the B subunit of enterotoxins from the cholera toxin family have a protective role and provide a potential therapeutic tool for intervention in EAE as well as in multiple sclerosis.


Subject(s)
Bacterial Toxins/pharmacology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Enterotoxins/pharmacology , Escherichia coli Proteins/pharmacology , Lymphocytes/drug effects , Recombinant Fusion Proteins/pharmacology , Analysis of Variance , Animals , Bacterial Toxins/biosynthesis , Bacterial Toxins/immunology , Cell Proliferation , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Enterotoxins/biosynthesis , Enterotoxins/immunology , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/genetics , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/immunology , Female , Hypersensitivity, Delayed/immunology , Lymphocytes/immunology , Macrophages/pathology , Male , Myelin Basic Protein/immunology , Peptides/pharmacology , Rats , Rats, Wistar , Recombinant Fusion Proteins/immunology , Synapsins/biosynthesis , Synapsins/immunology , Synapsins/pharmacology
6.
Protein Expr Purif ; 59(2): 320-6, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18400513

ABSTRACT

The B subunit of Escherichia coli heat-labile toxin (LTB) may function as an efficient carrier molecule for the delivery of genetically coupled antigens across the mucosal barrier. We constructed vectors for the expression of LTB and LTBSC proteins. LTBSC is a fusion protein that comprises the amino acid sequence from the C-domain of rat synapsin fused to the C-terminal end of LTB. Both constructions have a coding sequence for a 6His-tag fused in-frame. LTBSC was expressed in E. coli as inclusion bodies. The inclusion bodies were isolated and purified by Ni2+-chelating affinity chromatography under denaturing condition. Purified LTBSC was diluted in several refolding buffers to gain a soluble and biologically active protein. Refolded LTBSC assembled as an active oligomer which binds to the GM1 receptor in an enzyme-linked immunosorbent assay (ELISA). Soluble LTB in the E. coli lysate was also purified by Ni2+-chelating affinity chromatography and the assembled pentamer was able to bind with high affinity to GM1 in vitro. LTBSC and LTB were fed to rats and the ability to induce antigen-specific tolerance was tested. LTBSC inhibited the specific delayed-type hypersensitivity (DTH) response and induced decreased antigen-specific in vivo and in vitro cell proliferation more efficiently than LTB. Thus, the novel hybrid molecule LTBSC when orally delivered was able to elicit a systemic immune response. These results suggest that LTBSC could be suitable for exploring further therapeutic treatment of autoimmune inflammatory diseases involving antigens from central nervous system.


Subject(s)
Bacterial Toxins/biosynthesis , Bacterial Toxins/immunology , Enterotoxins/biosynthesis , Enterotoxins/immunology , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/immunology , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/immunology , Synapsins/biosynthesis , Synapsins/immunology , Animals , Bacterial Toxins/therapeutic use , Enterotoxins/therapeutic use , Escherichia coli/genetics , Escherichia coli Proteins/therapeutic use , Female , Genetic Vectors/genetics , Hypersensitivity, Delayed/drug therapy , Hypersensitivity, Delayed/immunology , Inclusion Bodies/chemistry , Inclusion Bodies/metabolism , Male , Peptides/immunology , Peptides/metabolism , Peptides/therapeutic use , Protein Folding , Rats , Rats, Wistar , Recombinant Fusion Proteins/therapeutic use , Synapsins/therapeutic use
7.
FEBS J ; 273(15): 3444-53, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16884490

ABSTRACT

Human colon adenocarcinoma cells (HT29-ATCC) and the clone HT29-5F7 were cultured under conditions that differentiate cells to a polarized intestinal phenotype. Differentiated cells showed the presence of junctional complexes and intercellular lumina bordered by microvilli. Intestinal brush border hydrolase activities (sucrase, aminopeptidase N, lactase and maltase) were detected mainly in differentiated HT29-ATCC cells compared with the differentiated clone, HT29-5F7. The presence of non-GM1 receptors of Escherichia coli heat-labile enterotoxin (LT-I) on both types of differentiated HT29 cells was indicated by the inability of cholera toxin B subunit to block LT-I binding to the cells. Binding of LT-I to cells, when GM1 was blocked by the cholera toxin B subunit, was characterized by an increased number of LT-I receptors with respect to undifferentiated control cells. Moreover, both types of differentiated cells accumulated higher amounts of cyclic AMP in response to LT-I than undifferentiated cells. Helix pomatia lectin inhibited the binding of LT-I to cells and the subsequent production of cyclic AMP. LT-I recognized blood group A-active glycosphingolipids as functional receptors in both HT29 cell lines and the active pro-sucrase form of the glycoprotein carrying A-blood group activity present in HT29-ATCC cells. These results strongly suggest that LT-I can elicit an enhanced functional response using blood group A-active glycoconjugates as additional receptors on polarized intestinal epithelial cells.


Subject(s)
ABO Blood-Group System , Bacterial Toxins/metabolism , Cell Differentiation , Cyclic AMP/pharmacology , Enterotoxins/metabolism , Escherichia coli Proteins/metabolism , Glycoconjugates/metabolism , HT29 Cells , Humans , Microscopy, Electron, Transmission
8.
J Infect Dis ; 189(9): 1556-64, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15116290

ABSTRACT

We examined the ability of blood group A-active glycoconjugates to act as receptors for Escherichia coli heat-labile type I enterotoxin (LT-I) in HT-29 cells. These cells contained ~4 times more specific binding sites for LT-I than for cholera toxin (CT). Binding of LT-I could not be blocked by the B subunit of CT (CT-B), indicating the existence of LT-I receptors in addition to the glycosphingolipid GM1. LT-I was able to increase levels of cyclic adenosine monophosphate (AMP), even in the presence of CT-B. Helix pomatia and anti-blood group A antibody caused a dose-dependent inhibition of binding of LT-I to cells and production of cyclic AMP. LT-I recognized several complex blood group A-active glycosphingolipids from cells, and this interaction was also interfered with by H. pomatia. Treatment of cells with D,L-threo-1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol diminished surface expression of blood group A-active glycosphingolipids and binding of LT-I to non-GM1 receptors. These observations suggest that blood group A-active glycosphingolipids can function as alternative receptors for LT-I in HT-29 cells.


Subject(s)
ABO Blood-Group System/chemistry , Bacterial Toxins/metabolism , Enterotoxins/metabolism , Escherichia coli Proteins , Escherichia coli/metabolism , Glycosphingolipids/metabolism , Guanylate Cyclase/metabolism , Meperidine/analogs & derivatives , Receptors, Peptide/metabolism , Cyclic AMP/metabolism , HT29 Cells , Humans , Ligands , Meperidine/pharmacology , Receptors, Enterotoxin , Receptors, Guanylate Cyclase-Coupled , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...