Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Plants (Basel) ; 12(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36840274

ABSTRACT

Hybridization between Cucumis species, including cultivated melon (C. melo), is hampered by Interspecific Reproductive Barriers (IRBs). However, the nature of IRBs in Cucumis is largely unknown. This study explores locations, timing, and contribution to reproductive isolation (RI) of pre- and post-zygotic IRBs in Cucumis. To do this, we assessed crossability among Cucumis African wild species and C. melo at the pre-zygotic level by visualizing pollen tubes under fluorescence microscopy and, post-zygotically, by evaluating fruit/seed set and F1 hybrid fertility. Genetic distances among Cucumis species were inferred from Genotyping-by-Sequencing, and its correlation with RI stages was analyzed. Observed pre- and post-zygotic IRBs included pollen tube arrest, fruit set failure, and hybrid male sterility. Unilateral cross-incongruity/incompatibility (UCI) was detected in some hybridizations, and dominant gene action is suggested for pistil-side UCI in interspecific F1 hybrids. Notably, the allotetraploid C. ficifolius was very fertile as a seed parent but infertile in all reciprocal crosses. Contribution to RI was found significant for both pre- and post-zygotic IRBs. Additionally, a significant positive correlation was detected between genetic distance and pre- and post-zygotic RI stages. Interestingly, UCI offers an accessible system to dissect the genetics of IRBs in Cucumis, which may facilitate the use of wild relatives in breeding.

2.
Foods ; 12(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36673468

ABSTRACT

The effect of the QTL involved in climacteric ripening ETHQB3.5 on the fruit VOC composition was studied using a set of Near-Isogenic Lines (NILs) containing overlapping introgressions from the Korean accession PI 16375 on the chromosome 3 in the climacteric 'Piel de Sapo' (PS) genetic background. ETHQB3.5 was mapped in an interval of 1.24 Mb that contained a NAC transcription factor. NIL fruits also showed differences in VOC composition belonging to acetate esters, non-acetate esters, and sulfur-derived families. Cosegregation of VOC composition (23 out of 48 total QTLs were mapped) and climacteric ripening was observed, suggesting a pleiotropic effect of ETHQB3.5. On the other hand, other VOCs (mainly alkanes, aldehydes, and ketones) showed a pattern of variation independent of ETHQB3.5 effects, indicating the presence of other genes controlling non-climacteric ripening VOCs. Network correlation analysis and hierarchical clustering found groups of highly correlated compounds and confirmed the involvement of the climacteric differences in compound classes and VOC differences. The modification of melon VOCs may be achieved with or without interfering with its physiological behavior, but it is likely that high relative concentrations of some type of ethylene-dependent esters could be achieved in climacteric cultivars.

3.
Theor Appl Genet ; 135(3): 785-801, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34821982

ABSTRACT

KEY MESSAGE: The gene underlying the melon fruit shape QTL fsqs8.1 is a member of the Ovate Family Proteins. Variation in fruit morphology is caused by changes in gene expression likely due to a cryptic structural variation in this locus. Melon cultivars have a wide range of fruit morphologies. Quantitative trait loci (QTL) have been identified underlying such diversity. This research focuses on the fruit shape QTL fsqs8.1, previously detected in a cross between the accession PI 124112 (CALC, producing elongated fruit) and the cultivar 'Piel de Sapo' (PS, producing oval fruit). The CALC fsqs8.1 allele induced round fruit shape, being responsible for the transgressive segregation for this trait observed in that population. In fact, the introgression line CALC8-1, carrying the fsqs8.1 locus from CALC into the PS genetic background, produced perfect round fruit. Following a map-based cloning approach, we found that the gene underlying fsqs8.1 is a member of the Ovate Family Proteins (OFP), CmOFP13, likely a homologue of AtOFP1 and SlOFP20 from Arabidopsis thaliana and tomato, respectively. The induction of the round shape was due to the higher expression of the CALC allele at the early ovary development stage. The fsqs8.1 locus showed an important structural variation, being CmOFP13 surrounded by two deletions in the CALC genome. The deletions are present at very low frequency in melon germplasm. Deletions and single nucleotide polymorphisms in the fsqs8.1 locus could not be not associated with variation in fruit shape among different melon accessions, what indicates that other genetic factors should be involved to induce the CALC fsqs8.1 allele effects. Therefore, fsqs8.1 is an example of a cryptic variation that alters gene expression, likely due to structural variation, resulting in phenotypic changes in melon fruit morphology.


Subject(s)
Cucurbitaceae , Solanum lycopersicum , Chromosome Mapping , Cucurbitaceae/genetics , Fruit , Solanum lycopersicum/genetics , Quantitative Trait Loci
4.
Front Plant Sci ; 12: 769093, 2021.
Article in English | MEDLINE | ID: mdl-34899791

ABSTRACT

Climate change has been associated with a higher incidence of combined adverse environmental conditions that can promote a significant decrease in crop productivity. However, knowledge on how a combination of stresses might affect plant development is still scarce. MicroRNAs (miRNAs) have been proposed as potential targets for improving crop productivity. Here, we have combined deep-sequencing, computational characterization of responsive miRNAs and validation of their regulatory role in a comprehensive analysis of response of melon to several combinations of four stresses (cold, salinity, short day, and infection with a fungus). Twenty-two miRNA families responding to double and/or triple stresses were identified. The regulatory role of the differentially expressed miRNAs was validated by quantitative measurements of the expression of the corresponding target genes. A high proportion (ca. 60%) of these families (mainly highly conserved miRNAs targeting transcription factors) showed a non-additive response to multiple stresses in comparison with that observed under each one of the stresses individually. Among those miRNAs showing non-additive response to stress combinations, most interactions were negative, suggesting the existence of functional convergence in the miRNA-mediated response to combined stresses. Taken together, our results provide compelling pieces of evidence that the response to combined stresses cannot be easily predicted from the study individual stresses.

5.
J Exp Bot ; 72(18): 6081-6083, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34477836
6.
J Sci Food Agric ; 101(2): 754-777, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32713003

ABSTRACT

BACKGROUND: A near-isogenic line (NIL) of melon (SC10-2) with introgression in linkage group X was studied from harvest (at firm-ripe stage of maturity) until day 18 of postharvest storage at 20.5 °C together with its parental control ('Piel de Sapo', PS). RESULTS: SC10-2 showed higher flesh firmness and whole fruit hardness but lower juiciness than its parental. SC10-2 showed a decrease in respiration rate accompanied by a decrease in ethylene production during ripening, both of which fell to a greater extent than in PS. The introgression affected 11 volatile organic compounds (VOCs), the levels of which during ripening were generally higher in SC10-2 than in PS. Transcriptomic analysis from RNA-Seq revealed differentially expressed genes (DEGs) associated with the effects studied. For example, 909 DEGs were exclusive to the introgression, and only 23 DEGs were exclusive to postharvest ripening time. Major functions of the DEGs associated with introgression or ripening time were identified by cluster analysis. About 37 genes directly and/or indirectly affected the delay in ripening of SC10-2 compared with PS in general and, more particularly, the physiological and quality traits measured and, probably, the differential non-climacteric response. Of the former genes, we studied in more detail at least five that mapped in the introgression in linkage group (LG) X, and 32 outside it. CONCLUSION: There is an apparent control of textural changes, VOCs and fruit ripening by an expression quantitative trait locus located in LG X together with a direct control on them due to genes presented in the introgression (CmTrpD, CmNADH1, CmTCP15, CmGDSL esterase/lipase, and CmHK4-like) and CmNAC18. © 2020 Society of Chemical Industry.


Subject(s)
Cucurbitaceae/genetics , Fruit/growth & development , Cucurbitaceae/chemistry , Cucurbitaceae/growth & development , Cucurbitaceae/metabolism , Ethylenes/metabolism , Fruit/chemistry , Fruit/genetics , Fruit/metabolism , Gene Expression Profiling , Genetic Linkage , Plant Proteins/genetics , Plant Proteins/metabolism , Quantitative Trait Loci , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
7.
J Exp Bot ; 71(18): 5295-5297, 2020 09 19.
Article in English | MEDLINE | ID: mdl-32949243
8.
Nat Genet ; 51(11): 1607-1615, 2019 11.
Article in English | MEDLINE | ID: mdl-31676864

ABSTRACT

Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop.


Subject(s)
Chromosome Mapping , Cucurbitaceae/genetics , Domestication , Genome, Plant , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Cucurbitaceae/classification , Cucurbitaceae/growth & development , Genome-Wide Association Study , Genomics , Phenotype , Plant Breeding
9.
Front Plant Sci ; 10: 1219, 2019.
Article in English | MEDLINE | ID: mdl-31632432

ABSTRACT

Melon production is often compromised by viral diseases, which cannot be treated with chemicals. Therefore, the use of genetic resistances is the main strategy for generating crops resistant to viruses. Resistance to Cucumber mosaic virus (CMV) in melon is scarcely described in few accessions. Until recently, the only known resistant accessions were Freeman's Cucumber and PI 161375, cultivar Songwhan Charmi (SC). Resistance to CMV in melon is recessive and generally oligogenic and quantitative. However, in SC, the resistance to CMV strains of subgroup II is monogenic, depending only on one gene, cmv1, which is able to stop CMV movement by restricting the virus to the bundle sheath cells and preventing a systemic infection. This restriction depends on the viral movement protein (MP). Chimeric viruses carrying the MP of subgroup II strains, like the strain LS (CMV-LS), are restricted in the bundle sheath cells, whereas those carrying MP from subgroup I, like the strain FNY (CMV-FNY), are able to overcome this restriction. cmv1 encodes a vacuolar protein sorting 41 (CmVPS41), a protein involved in the transport of cargo proteins from the Golgi to the vacuole through late endosomes. We have analyzed the variability of the gene CmVPS41 in a set of 52 melon accessions belonging to 15 melon groups, both from the spp melo and the spp agrestis. We have identified 16 different haplotypes, encoding 12 different CmVPS41 protein variants. Challenging members of all haplotypes with CMV-LS, we have identified nine new resistant accessions. The resistance correlates with the presence of two mutations, either L348R, previously found in the accession SC and present in other three melon genotypes, or G85E, present in Freeman's Cucumber and found also in four additional melon genotypes. Moreover, the new resistant accessions belong to three different melon horticultural groups, Conomon, Makuwa, and Dudaim. In the new resistant accessions, the virus was able to replicate and move cell to cell, but was not able to reach the phloem. Therefore, resistance to phloem entry seems to be a general strategy in melon controlled by CmVPS41. Finally, the newly reported resistant accessions broaden the possibilities for the use of genetic resistances in new melon breeding strategies.

10.
BMC Genomics ; 20(1): 448, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31159730

ABSTRACT

BACKGROUND: The importance of Indian germplasm as origin and primary center of diversity of cultivated melon is widely accepted. Genetic diversity of several collections from Indian has been studied previously, although an integrated analysis of these collections in a global diversity perspective has not been possible. In this study, a sample of Indian collections together with a selection of world-wide cultivars to analyze the genetic diversity structure based on Genotype by Sequence data. RESULTS: A set of 6158 informative Single Nucleotide Polymorphism (SNP) in 175 melon accessions was generated. Melon germplasm could be classified into six major groups, in concordance with horticultural groups. Indian group was in the center of the diversity plot, with the highest genetic diversity. No strict genetic differentiation between wild and cultivated accessions was appreciated in this group. Genomic regions likely involved in the process of diversification were also found. Interestingly, some SNPs differentiating inodorus and cantalupensis groups are linked to Quantitiative Trait Loci involved in ripening behavior (a major characteristic that differentiate those groups). Linkage disequilibrium was found to be low (17 kb), with more rapid decay in euchromatic (8 kb) than heterochromatic (30 kb) regions, demonstrating that recombination events do occur within heterochromatn, although at lower frequency than in euchromatin. Concomitantly, haplotype blocks were relatively small (59 kb). Some of those haplotype blocks were found fixed in different melon groups, being therefore candidate regions that are involved in the diversification of melon cultivars. CONCLUSIONS: The results support the hypothesis that India is the primary center of diversity of melon, Occidental and Far-East cultivars have been developed by divergent selection. Indian germplasm is genetically distinct from African germplasm, supporting independent domestication events. The current set of traditional Indian accessions may be considered as a population rather than a standard collection of fixed landraces with high intercrossing between cultivated and wild melons.


Subject(s)
Cucurbitaceae/classification , Cucurbitaceae/genetics , DNA, Plant/genetics , Polymorphism, Single Nucleotide , Seeds/genetics , Sequence Analysis, DNA/methods , Genome, Plant , Genotype , India , Linkage Disequilibrium
11.
Nat Commun ; 9(1): 4734, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413711

ABSTRACT

Shapes of edible plant organs vary dramatically among and within crop plants. To explain and ultimately employ this variation towards crop improvement, we determined the genetic, molecular and cellular bases of fruit shape diversity in tomato. Through positional cloning, protein interaction studies, and genome editing, we report that OVATE Family Proteins and TONNEAU1 Recruiting Motif proteins regulate cell division patterns in ovary development to alter final fruit shape. The physical interactions between the members of these two families are necessary for dynamic relocalization of the protein complexes to different cellular compartments when expressed in tobacco leaf cells. Together with data from other domesticated crops and model plant species, the protein interaction studies provide possible mechanistic insights into the regulation of morphological variation in plants and a framework that may apply to organ growth in all plant species.


Subject(s)
Biodiversity , Fruit/anatomy & histology , Fruit/genetics , Plants/anatomy & histology , Plants/genetics , Amino Acid Sequence , Cell Division , Genetic Complementation Test , Models, Biological , Physical Chromosome Mapping , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Binding , Saccharomyces cerevisiae/metabolism
12.
Am J Bot ; 105(10): 1662-1671, 2018 10.
Article in English | MEDLINE | ID: mdl-30299543

ABSTRACT

PREMISE OF THE STUDY: The domestication history of melon is still unclear. An African or Asian origin has been suggested, but its closest wild relative was recently revealed to be an Australian species. The complicated taxonomic history of melon has resulted in additional confusion, with a high number of misidentified germplasm collections currently used by breeders and in genomics research. METHODS: Using seven DNA regions sequenced for 90% of the genus and the major cultivar groups, we sort out described names and infer evolutionary origins and domestication centers. KEY RESULTS: We found that modern melon cultivars go back to two lineages, which diverged ca. 2 million years ago. One is restricted to Asia (Cucumis melo subsp. melo), and the second, here described as C. melo subsp. meloides, is restricted to Africa. The Asian lineage has given rise to the widely commercialized cultivar groups and their market types, while the African lineage gave rise to cultivars still grown in the Sudanian region. We show that C. trigonus, an overlooked perennial and drought-tolerant species from India is among the closest living relatives of C. melo. CONCLUSIONS: Melon was domesticated at least twice: in Africa and Asia. The African lineage and the Indian C. trigonus are exciting new resources for breeding of melons tolerant to climate change.


Subject(s)
Cucumis melo/genetics , Domestication , Evolution, Molecular , Africa , Asia , Cucumis melo/classification , India , Sequence Analysis, DNA
13.
Front Plant Sci ; 8: 1679, 2017.
Article in English | MEDLINE | ID: mdl-29018473

ABSTRACT

Sugar content is the major determinant of both fruit quality and consumer acceptance in melon (Cucumis melo L), and is a primary target for crop improvement. Near-isogenic lines (NILs) derived from the intraspecific cross between a "Piel de Sapo" (PS) type and the exotic cultivar "Songwhan Charmi" (SC), and several populations generated from the cross of PS × Ames 24294 ("Trigonus"), a wild melon, were used to identify QTL related to sugar and organic acid composition. Seventy-eight QTL were detected across several locations and different years, with three important clusters related to sugar content located on chromosomes 4, 5, and 7. Two PS × SC NILs (SC5-1 and SC5-2) sharing a common genomic interval of 1.7 Mb at the top of chromosome 5 contained QTL reducing soluble solids content (SSC) and sucrose content by an average of 29 and 68%, respectively. This cluster collocated with QTL affecting sugar content identified in other studies in lines developed from the PS × SC cross and supported the presence of a stable consensus locus involved in sugar accumulation that we named SUCQSC5.1. QTL reducing soluble solids and sucrose content identified in the "Trigonus" mapping populations, as well as QTL identified in previous studies from other ssp. agrestis sources, collocated with SUCQSC5.1, suggesting that they may be allelic and implying a role in domestication. In subNILs derived from the PS × SC5-1 cross, SUCQSC5.1 reduced SSC and sucrose content by an average of 18 and 34%, respectively, and was fine-mapped to a 56.1 kb interval containing four genes. Expression analysis of the candidate genes in mature fruit showed differences between the subNILs with PS alleles that were "high" sugar and SC alleles of "low" sugar phenotypes for MELO3C014519, encoding a putative BEL1-like homeodomain protein. Sequence differences in the gene predicted to affect protein function were restricted to SC and other ssp. agrestis cultivar groups. These results provide the basis for further investigation of genes affecting sugar accumulation in melon.

14.
Front Plant Sci ; 8: 652, 2017.
Article in English | MEDLINE | ID: mdl-28553296

ABSTRACT

Improving fruit quality has become a major goal in plant breeding. Direct approaches to tackling fruit quality traits specifically linked to consumer preferences and environmental friendliness, such as improved flavor, nutraceutical compounds, and sustainability, have slowly been added to a breeder priority list that already includes traits like productivity, efficiency, and, especially, pest and disease control. Breeders already use molecular genetic tools to improve fruit quality although most advances have been made in producer and industrial quality standards. Furthermore, progress has largely been limited to simple agronomic traits easy-to-observe, whereas the vast majority of quality attributes, specifically those relating to flavor and nutrition, are complex and have mostly been neglected. Fortunately, wild germplasm, which is used for resistance against/tolerance of environmental stresses (including pathogens), is still available and harbors significant genetic variation for taste and health-promoting traits. Similarly, heirloom/traditional varieties could be used to identify which genes contribute to flavor and health quality and, at the same time, serve as a good source of the best alleles for organoleptic quality improvement. Grape (Vitis vinifera L.) and tomato (Solanum lycopersicum L.) produce fleshy, berry-type fruits, among the most consumed in the world. Both have undergone important domestication and selection processes, that have dramatically reduced their genetic variability, and strongly standardized fruit traits. Moreover, more and more consumers are asking for sustainable production, incompatible with the wide range of chemical inputs. In the present paper, we review the genetic resources available to tomato/grape breeders, and the recent technological progresses that facilitate the identification of genes/alleles of interest within the natural or generated variability gene pool. These technologies include omics, high-throughput phenotyping/phenomics, and biotech approaches. Our review also covers a range of technologies used to transfer to tomato and grape those alleles considered of interest for fruit quality. These include traditional breeding, TILLING (Targeting Induced Local Lesions in Genomes), genetic engineering, or NPBT (New Plant Breeding Technologies). Altogether, the combined exploitation of genetic variability and innovative biotechnological tools may facilitate breeders to improve fruit quality tacking more into account the consumer standards and the needs to move forward into more sustainable farming practices.

15.
Plant J ; 91(4): 671-683, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28493311

ABSTRACT

Fruit ripening is divided into climacteric and non-climacteric types depending on the presence or absence of a transient rise in respiration rate and the production of autocatalytic ethylene. Melon is ideal for the study of fruit ripening, as both climacteric and non-climacteric varieties exist. Two introgressions of the non-climacteric accession PI 161375, encompassed in the QTLs ETHQB3.5 and ETHQV6.3, into the non-climacteric 'Piel de Sapo' background are able to induce climacteric ripening independently. We report that the gene underlying ETHQV6.3 is MELO3C016540 (CmNAC-NOR), encoding a NAC (NAM, ATAF1,2, CUC2) transcription factor that is closely related to the tomato NOR (non-ripening) gene. CmNAC-NOR was functionally validated through the identification of two TILLING lines carrying non-synonymous mutations in the conserved NAC domain region. In an otherwise highly climacteric genetic background, both mutations provoked a significant delay in the onset of fruit ripening and in the biosynthesis of ethylene. The PI 161375 allele of ETHQV6.3 is similar to that of climacteric lines of the cantalupensis type and, when introgressed into the non-climacteric 'Piel de Sapo', partially restores its climacteric ripening capacity. CmNAC-NOR is expressed in fruit flesh of both climacteric and non-climacteric lines, suggesting that the causal mutation may not be acting at the transcriptional level. The use of a comparative genetic approach in a species with both climacteric and non-climacteric ripening is a powerful strategy to dissect the complex mechanisms regulating the onset of fruit ripening.


Subject(s)
Cucumis melo/genetics , Ethylenes/metabolism , Plant Growth Regulators/metabolism , Quantitative Trait Loci/genetics , Transcription Factors/metabolism , Chromosome Mapping , Cucumis melo/growth & development , Fruit/genetics , Fruit/growth & development , Mutation , Phenotype , Transcription Factors/genetics
16.
J Exp Bot ; 68(11): 2703-2716, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28475776

ABSTRACT

The cuticle is a specialized cell wall layer that covers the outermost surface of the epidermal cells and has important implications for fruit permeability and pathogen susceptibility. In order to decipher the genetic control of tomato fruit cuticle composition, an introgression line (IL) population derived from a biparental cross between Solanum pennellii (LA0716) and the Solanum lycopersicum cultivar M82 was used to build a first map of associated quantitative trait loci (QTLs). A total of 24 cuticular waxes and 26 cutin monomers were determined. They showed changes associated with 18 genomic regions distributed in nine chromosomes affecting 19 ILs. Out of the five main fruit cuticular components described for the wild species S. pennellii, three of them were associated with IL3.4, IL12.1, and IL7.4.1, causing an increase in n-alkanes (≥C30), a decrease in amyrin content, and a decrease in cuticle thickness of ~50%, respectively. Moreover, we also found a QTL associated with increased levels of amyrins in IL3.4. In addition, we propose some candidate genes on the basis of their differential gene expression and single nucleotide polymorphism variability between the introgressed and the recurrent alleles, which will be the subjects of further investigation.


Subject(s)
Lipid Metabolism , Quantitative Trait Loci , Solanum lycopersicum/genetics , Chromosome Mapping , Chromosomes, Plant , Fruit/genetics , Genes, Plant , Solanum lycopersicum/metabolism , Membrane Lipids/metabolism , Plant Epidermis/metabolism , Waxes/metabolism
17.
BMC Genomics ; 18(1): 94, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28100189

ABSTRACT

BACKGROUND: Cucurbita pepo is a cucurbit with growing economic importance worldwide. Zucchini morphotype is the most important within this highly variable species. Recently, transcriptome and Simple Sequence Repeat (SSR)- and Single Nucleotide Polymorphism (SNP)-based medium density maps have been reported, however further genomic tools are needed for efficient molecular breeding in the species. Our objective is to combine currently available complete transcriptomes and the Zucchini genome sequence with high throughput genotyping methods, mapping population development and extensive phenotyping to facilitate the advance of genomic research in this species. RESULTS: We report the Genotyping-by-sequencing analysis of a RIL population developed from the inter subspecific cross Zucchini x Scallop (ssp. pepo x ssp. ovifera). Several thousands of SNP markers were identified and genotyped, followed by the construction of a high-density linkage map based on 7,718 SNPs (average of 386 markers/linkage group) covering 2,817.6 cM of the whole genome, which is a great improvement with respect to previous maps. A QTL analysis was performed using phenotypic data obtained from the RIL population from three environments. In total, 48 consistent QTLs for vine, flowering and fruit quality traits were detected on the basis of a multiple-environment analysis, distributed in 33 independent positions in 15 LGs, and each QTL explained 1.5-62.9% of the phenotypic variance. Eight major QTLs, which could explain greater than 20% of the phenotypic variation were detected and the underlying candidate genes identified. CONCLUSIONS: Here we report the first SNP saturated map in the species, anchored to the physical map. Additionally, several consistent QTLs related to early flowering, fruit shape and length, and rind and flesh color are reported as well as candidate genes for them. This information will enhance molecular breeding in C. pepo and will assist the gene cloning underlying the studied QTLs, helping to reveal the genetic basis of the studied processes in squash.


Subject(s)
Chromosome Mapping , Cucurbita/genetics , Fruit/genetics , Genotyping Techniques , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Sequence Analysis , Cucurbita/growth & development , Flowers/growth & development , Fruit/metabolism , Genomics , Phenotype , Pigmentation
18.
J Exp Bot ; 68(3): 429-442, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28040800

ABSTRACT

Volatile organic compounds (VOCs) are major determinants of fruit flavor, a primary objective in tomato breeding. A recombinant inbred line (RIL) population consisting of 169 lines derived from a cross between Solanum lycopersicum and a red-fruited wild tomato species Solanum pimpinellifolium accession (SP) was characterized for VOCs in three different seasons. Correlation and hierarchical cluster analyses were performed on the 52 VOCs identified, providing a tool for the putative assignation of individual compounds to metabolic pathways. Quantitative trait locus (QTL) analysis, based on a genetic linkage map comprising 297 single nucleotide polymorphisms (SNPs), revealed 102 QTLs (75% not described previously) corresponding to 39 different VOCs. The SP alleles exerted a positive effect on most of the underlying apocarotenoid volatile QTLs-regarded as desirable for liking tomato-indicating that alleles inherited from SP are a valuable resource for flavor breeding. An introgression line (IL) population developed from the same parental genotypes provided 12 ILs carrying a single SP introgression and covering 85 VOC QTLs, which were characterized at three locations. The results showed that almost half of the QTLs previously identified in the RILs maintained their effect in an IL form, reinforcing the value of these QTLs for flavor/aroma breeding in cultivated tomato.


Subject(s)
Genes, Plant , Quantitative Trait Loci , Solanum/genetics , Solanum/metabolism , Volatile Organic Compounds/metabolism , Fruit/chemistry , Fruit/metabolism , Hybridization, Genetic , Volatile Organic Compounds/chemistry
19.
Front Plant Sci ; 7: 1172, 2016.
Article in English | MEDLINE | ID: mdl-27582742

ABSTRACT

We have studied a genomic library of introgression lines from the Solanum pimpinellifolium accession TO-937 into the genetic background of the "Moneymaker" cultivar in order to evaluate the accession's breeding potential. Overall, no deleterious phenotypes were observed, and the plants and fruits were phenotypically very similar to those of "Moneymaker," which confirms the feasibility of translating the current results into elite breeding programs. We identified chromosomal regions associated with traits that were both vegetative (plant vigor, trichome density) and fruit-related (morphology, organoleptic quality, color). A trichome-density locus was mapped on chromosome 10 that had not previously been associated with insect resistance, which indicates that the increment of trichomes by itself does not confer resistance. A large number of quantitative trait loci (QTLs) have been identified for fruit weight. Interestingly, fruit weight QTLs on chromosomes 1 and 10 showed a magnitude effect similar to that of QTLs previously defined as important in domestication and diversification. Low variability was observed for fruit-shape-related traits. We were, however, able to identify a QTL for shoulder height, although the effects were quite low, thus demonstrating the suitability of the current population for QTL detection. Regarding organoleptic traits, consistent QTLs were detected for soluble solid content (SSC). Interestingly, QTLs on chromosomes 2 and 9 increased SSC but did not affect fruit weight, making them quite promising for introduction in modern cultivars. Three ILs with introgressions on chromosomes 1, 2, and 10 increased the internal fruit color, making them candidates for increasing the color of modern cultivars. Comparing the QTL detection between this IL population and a recombinant inbred line population from the same cross, we found that QTL stability across generations depended on the trait, as it was very high for fruit weight but low for organoleptic traits. This difference in QTL stability may be due to a predominant additive gene action for QTLs involved in fruit weight, whereas epistatic and genetic background interactions are most likely important for the other traits.

20.
BMC Plant Biol ; 16(1): 154, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27390934

ABSTRACT

BACKGROUND: Genomic libraries of introgression lines (ILs) consist of collections of homozygous lines with a single chromosomal introgression from a donor genotype in a common, usually elite, genetic background, representing the whole donor genome in the full collection. Currently, the only available melon IL collection was generated using Piel de sapo (var. inodorus) as the recurrent background. ILs are not available in genetic backgrounds representing other important market class cultivars, such as the cantalupensis. The recent availability of genomic tools in melon, such as SNP collections and genetic maps, facilitates the development of such mapping populations. RESULTS: We have developed a new genomic library of introgression lines from the Japanese cv. Ginsen Makuwa (var. makuwa) into the French Charentais-type cv. Vedrantais (var. cantalupensis) genetic background. In order to speed up the breeding program, we applied medium-throughput SNP genotyping with Sequenom MassARRAY technology in early backcross generations and High Resolution Melting in the final steps. The phenotyping of the backcross generations and of the final set of 27 ILs (averaging 1.3 introgressions/plant and covering nearly 100 % of the donor genome), in three environments, allowed the detection of stable QTLs for flowering and fruit quality traits, including some that affect fruit size in chromosomes 6 and 11, others that change fruit shape in chromosomes 7 and 11, others that change flesh color in chromosomes 2, 8 and 9, and still others that increase sucrose content and delay climacteric behavior in chromosomes 5 and 10. CONCLUSIONS: A new melon IL collection in the Charentais genetic background has been developed. Genomic regions that consistently affect flowering and fruit quality traits have been identified, which demonstrates the suitability of this collection for dissecting complex traits in melon. Additionally, pre-breeding lines with new, commercially interesting phenotypes have been observed, including delayed climacteric ripening associated to higher sucrose levels, which is of great interest for Charentais cultivar breeding.


Subject(s)
Cucumis melo/genetics , Fruit/genetics , Genomic Library , Genotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...