Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 406, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195686

ABSTRACT

Tuberous Sclerosis Complex (TSC) is caused by TSC1 or TSC2 mutations, leading to hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and lesions  in multiple organs including lung (lymphangioleiomyomatosis) and kidney (angiomyolipoma and renal cell carcinoma). Previously, we found that TFEB is constitutively active in TSC. Here, we generated two mouse models of TSC in which kidney pathology is the primary phenotype. Knockout of TFEB rescues kidney pathology and overall survival, indicating that TFEB is the primary driver of renal disease in TSC. Importantly, increased mTORC1 activity in the TSC2 knockout kidneys is normalized by TFEB knockout. In TSC2-deficient cells, Rheb knockdown or Rapamycin treatment paradoxically increases TFEB phosphorylation at the mTORC1-sites and relocalizes TFEB from nucleus to cytoplasm. In mice, Rapamycin treatment normalizes lysosomal gene expression, similar to TFEB knockout, suggesting that Rapamycin's benefit in TSC is TFEB-dependent. These results change the view of the mechanisms of mTORC1 hyperactivation in TSC and may lead to therapeutic avenues.


Subject(s)
Kidney Neoplasms , Tuberous Sclerosis , Animals , Mice , Mechanistic Target of Rapamycin Complex 1 , Mice, Knockout , Sirolimus/pharmacology , Tuberous Sclerosis/genetics
2.
Nat Commun ; 14(1): 3911, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400440

ABSTRACT

Batten disease, one of the most devastating types of neurodegenerative lysosomal storage disorders, is caused by mutations in CLN3. Here, we show that CLN3 is a vesicular trafficking hub connecting the Golgi and lysosome compartments. Proteomic analysis reveals that CLN3 interacts with several endo-lysosomal trafficking proteins, including the cation-independent mannose 6 phosphate receptor (CI-M6PR), which coordinates the targeting of lysosomal enzymes to lysosomes. CLN3 depletion results in mis-trafficking of CI-M6PR, mis-sorting of lysosomal enzymes, and defective autophagic lysosomal reformation. Conversely, CLN3 overexpression promotes the formation of multiple lysosomal tubules, which are autophagy and CI-M6PR-dependent, generating newly formed proto-lysosomes. Together, our findings reveal that CLN3 functions as a link between the M6P-dependent trafficking of lysosomal enzymes and lysosomal reformation pathway, explaining the global impairment of lysosomal function in Batten disease.


Subject(s)
Membrane Glycoproteins , Neuronal Ceroid-Lipofuscinoses , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Receptor, IGF Type 2/genetics , Receptor, IGF Type 2/metabolism , Proteomics , Molecular Chaperones/metabolism , Lysosomes/metabolism , Hydrolases/metabolism , Autophagy
3.
Nat Commun ; 14(1): 2775, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188688

ABSTRACT

Heterozygous mutations in the gene encoding RagD GTPase were shown to cause a novel autosomal dominant condition characterized by kidney tubulopathy and cardiomyopathy. We previously demonstrated that RagD, and its paralogue RagC, mediate a non-canonical mTORC1 signaling pathway that inhibits the activity of TFEB and TFE3, transcription factors of the MiT/TFE family and master regulators of lysosomal biogenesis and autophagy. Here we show that RagD mutations causing kidney tubulopathy and cardiomyopathy are "auto- activating", even in the absence of Folliculin, the GAP responsible for RagC/D activation, and cause constitutive phosphorylation of TFEB and TFE3 by mTORC1, without affecting the phosphorylation of "canonical" mTORC1 substrates, such as S6K. By using HeLa and HK-2 cell lines, human induced pluripotent stem cell-derived cardiomyocytes and patient-derived primary fibroblasts, we show that RRAGD auto-activating mutations lead to inhibition of TFEB and TFE3 nuclear translocation and transcriptional activity, which impairs the response to lysosomal and mitochondrial injury. These data suggest that inhibition of MiT/TFE factors plays a key role in kidney tubulopathy and cardiomyopathy syndrome.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Induced Pluripotent Stem Cells , Humans , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , HeLa Cells , Induced Pluripotent Stem Cells/metabolism , Kidney/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mutation
4.
EMBO Mol Med ; 15(3): e14837, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36789546

ABSTRACT

Multiple sulfatase deficiency (MSD, MIM #272200) results from pathogenic variants in the SUMF1 gene that impair proper function of the formylglycine-generating enzyme (FGE). FGE is essential for the posttranslational activation of cellular sulfatases. MSD patients display reduced or absent sulfatase activities and, as a result, clinical signs of single sulfatase disorders in a unique combination. Up to date therapeutic options for MSD are limited and mostly palliative. We performed a screen of FDA-approved drugs using immortalized MSD patient fibroblasts. Recovery of arylsulfatase A activity served as the primary readout. Subsequent analysis confirmed that treatment of primary MSD fibroblasts with tazarotene and bexarotene, two retinoids, led to a correction of MSD pathophysiology. Upon treatment, sulfatase activities increased in a dose- and time-dependent manner, reduced glycosaminoglycan content decreased and lysosomal position and size normalized. Treatment of MSD patient derived induced pluripotent stem cells (iPSC) differentiated into neuronal progenitor cells (NPC) resulted in a positive treatment response. Tazarotene and bexarotene act to ultimately increase the stability of FGE variants. The results lay the basis for future research on the development of a first therapeutic option for MSD patients.


Subject(s)
Multiple Sulfatase Deficiency Disease , Humans , Multiple Sulfatase Deficiency Disease/diagnosis , Multiple Sulfatase Deficiency Disease/genetics , Multiple Sulfatase Deficiency Disease/pathology , Bexarotene , Drug Evaluation, Preclinical , Sulfatases/genetics , Oxidoreductases Acting on Sulfur Group Donors
5.
Nature ; 614(7948): 572-579, 2023 02.
Article in English | MEDLINE | ID: mdl-36697823

ABSTRACT

The transcription factor TFEB is a master regulator of lysosomal biogenesis and autophagy1. The phosphorylation of TFEB by the mechanistic target of rapamycin complex 1 (mTORC1)2-5 is unique in its mTORC1 substrate recruitment mechanism, which is strictly dependent on the amino acid-mediated activation of the RagC GTPase activating protein FLCN6,7. TFEB lacks the TOR signalling motif responsible for the recruitment of other mTORC1 substrates. We used cryogenic-electron microscopy to determine the structure of TFEB as presented to mTORC1 for phosphorylation, which we refer to as the 'megacomplex'. Two full Rag-Ragulator complexes present each molecule of TFEB to the mTOR active site. One Rag-Ragulator complex is bound to Raptor in the canonical mode seen previously in the absence of TFEB. A second Rag-Ragulator complex (non-canonical) docks onto the first through a RagC GDP-dependent contact with the second Ragulator complex. The non-canonical Rag dimer binds the first helix of TFEB with a RagCGDP-dependent aspartate clamp in the cleft between the Rag G domains. In cellulo mutation of the clamp drives TFEB constitutively into the nucleus while having no effect on mTORC1 localization. The remainder of the 108-amino acid TFEB docking domain winds around Raptor and then back to RagA. The double use of RagC GDP contacts in both Rag dimers explains the strong dependence of TFEB phosphorylation on FLCN and the RagC GDP state.


Subject(s)
Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Monomeric GTP-Binding Proteins , Amino Acids/metabolism , Catalytic Domain , Guanosine Diphosphate/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Phosphorylation , Protein Multimerization , Regulatory-Associated Protein of mTOR/metabolism , Signal Transduction
6.
Nat Commun ; 13(1): 5529, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130971

ABSTRACT

Dysregulated secretion in neutrophil leukocytes associates with human inflammatory disease. The exocytosis response to triggering stimuli is sequential; gelatinase granules modulate the initiation of the innate immune response, followed by the release of pro-inflammatory azurophilic granules, requiring stronger stimulation. Exocytosis requires actin depolymerization which is actively counteracted under non-stimulatory conditions. Here we show that the actin nucleator, WASH, is necessary to maintain azurophilic granules in their refractory state by granule actin entrapment and interference with the Rab27a-JFC1 exocytic machinery. On the contrary, gelatinase granules of WASH-deficient neutrophil leukocytes are characterized by decreased Rac1, shortened granule-associated actin comets and impaired exocytosis. Rac1 activation restores exocytosis of these granules. In vivo, WASH deficiency induces exacerbated azurophilic granule exocytosis, inflammation, and decreased survival. WASH deficiency thus differentially impacts neutrophil granule subtypes, impairing exocytosis of granules that mediate the initiation of the neutrophil innate response while exacerbating pro-inflammatory granule secretion.


Subject(s)
Actins , Neutrophils , Cytoplasmic Granules , Exocytosis , Gelatinases , Humans , Inflammation , Microfilament Proteins
7.
Traffic ; 23(5): 238-269, 2022 05.
Article in English | MEDLINE | ID: mdl-35343629

ABSTRACT

Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.


Subject(s)
Lysosomes , Metabolic Networks and Pathways , Lysosomes/metabolism , Signal Transduction
8.
EMBO Mol Med ; 13(10): e13742, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34411438

ABSTRACT

Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Animals , Drug Repositioning , Humans , Lysosomes , Membrane Glycoproteins/genetics , Mice , Molecular Chaperones/genetics , Neuronal Ceroid-Lipofuscinoses/drug therapy , Phenotype , Tamoxifen/pharmacology
9.
Nat Commun ; 12(1): 3495, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108486

ABSTRACT

Lysosomal storage disorders characterized by altered metabolism of heparan sulfate, including Mucopolysaccharidosis (MPS) III and MPS-II, exhibit lysosomal dysfunctions leading to neurodegeneration and dementia in children. In lysosomal storage disorders, dementia is preceded by severe and therapy-resistant autistic-like symptoms of unknown cause. Using mouse and cellular models of MPS-IIIA, we discovered that autistic-like behaviours are due to increased proliferation of mesencephalic dopamine neurons originating during embryogenesis, which is not due to lysosomal dysfunction, but to altered HS function. Hyperdopaminergia and autistic-like behaviours are corrected by the dopamine D1-like receptor antagonist SCH-23390, providing a potential alternative strategy to the D2-like antagonist haloperidol that has only minimal therapeutic effects in MPS-IIIA. These findings identify embryonic dopaminergic neurodevelopmental defects due to altered function of HS leading to autistic-like behaviours in MPS-II and MPS-IIIA and support evidence showing that altered HS-related gene function is causative of autism.


Subject(s)
Autism Spectrum Disorder/metabolism , Dopamine/metabolism , Heparitin Sulfate/metabolism , Lysosomal Storage Diseases/metabolism , Animals , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/pathology , Benzazepines/therapeutic use , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Dopamine Antagonists/therapeutic use , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Heparitin Sulfate/pharmacology , Lysosomal Storage Diseases/drug therapy , Lysosomal Storage Diseases/pathology , Mesencephalon/drug effects , Mesencephalon/embryology , Mesencephalon/pathology , Mice , Mucopolysaccharidosis III/drug therapy , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/pathology , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D1/metabolism
10.
Nature ; 585(7826): 597-602, 2020 09.
Article in English | MEDLINE | ID: mdl-32612235

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) is a key metabolic hub that controls the cellular response to environmental cues by exerting its kinase activity on multiple substrates1-3. However, whether mTORC1 responds to diverse stimuli by differentially phosphorylating specific substrates is poorly understood. Here we show that transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy4,5, is phosphorylated by mTORC1 via a substrate-specific mechanism that is mediated by Rag GTPases. Owing to this mechanism, the phosphorylation of TFEB-unlike other substrates of mTORC1, such as S6K and 4E-BP1- is strictly dependent on the amino-acid-mediated activation of RagC and RagD GTPases, but is insensitive to RHEB activity induced by growth factors. This mechanism has a crucial role in Birt-Hogg-Dubé syndrome, a disorder that is caused by mutations in the RagC and RagD activator folliculin (FLCN) and is characterized by benign skin tumours, lung and kidney cysts and renal cell carcinoma6,7. We found that constitutive activation of TFEB is the main driver of the kidney abnormalities and mTORC1 hyperactivity in a mouse model of Birt-Hogg-Dubé syndrome. Accordingly, depletion of TFEB in kidneys of these mice fully rescued the disease phenotype and associated lethality, and normalized mTORC1 activity. Our findings identify a mechanism that enables differential phosphorylation of mTORC1 substrates, the dysregulation of which leads to kidney cysts and cancer.


Subject(s)
Birt-Hogg-Dube Syndrome/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/deficiency , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Cell Line , Disease Models, Animal , Enzyme Activation , HeLa Cells , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Mice , Mice, Knockout , Monomeric GTP-Binding Proteins/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Substrate Specificity , Tuberous Sclerosis Complex 2 Protein/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics
11.
Nat Commun ; 9(1): 3312, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30120233

ABSTRACT

During starvation the transcriptional activation of catabolic processes is induced by the nuclear translocation and consequent activation of transcription factor EB (TFEB), a master modulator of autophagy and lysosomal biogenesis. However, how TFEB is inactivated upon nutrient refeeding is currently unknown. Here we show that TFEB subcellular localization is dynamically controlled by its continuous shuttling between the cytosol and the nucleus, with the nuclear export representing a limiting step. TFEB nuclear export is mediated by CRM1 and is modulated by nutrient availability via mTOR-dependent hierarchical multisite phosphorylation of serines S142 and S138, which are localized in proximity of a nuclear export signal (NES). Our data on TFEB nucleo-cytoplasmic shuttling suggest an unpredicted role of mTOR in nuclear export.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Nucleus/metabolism , TOR Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Cytosol/metabolism , HEK293 Cells , HeLa Cells , Humans , Karyopherins , Kinetics , Phosphorylation , Protein Transport , Receptors, Cytoplasmic and Nuclear , Exportin 1 Protein
12.
J Clin Invest ; 127(10): 3717-3729, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28872463

ABSTRACT

The mammalian target of rapamycin complex 1 (mTORC1) kinase promotes cell growth by activating biosynthetic pathways and suppressing catabolic pathways, particularly that of macroautophagy. A prerequisite for mTORC1 activation is its translocation to the lysosomal surface. Deregulation of mTORC1 has been associated with the pathogenesis of several diseases, but its role in skeletal disorders is largely unknown. Here, we show that enhanced mTORC1 signaling arrests bone growth in lysosomal storage disorders (LSDs). We found that lysosomal dysfunction induces a constitutive lysosomal association and consequent activation of mTORC1 in chondrocytes, the cells devoted to bone elongation. mTORC1 hyperphosphorylates the protein UV radiation resistance-associated gene (UVRAG), reducing the activity of the associated Beclin 1-Vps34 complex and thereby inhibiting phosphoinositide production. Limiting phosphoinositide production leads to a blockage of the autophagy flux in LSD chondrocytes. As a consequence, LSD chondrocytes fail to properly secrete collagens, the main components of the cartilage extracellular matrix. In mouse models of LSD, normalization of mTORC1 signaling or stimulation of the Beclin 1-Vps34-UVRAG complex rescued the autophagy flux, restored collagen levels in cartilage, and ameliorated the bone phenotype. Taken together, these data unveil a role for mTORC1 and autophagy in the pathogenesis of skeletal disorders and suggest potential therapeutic approaches for the treatment of LSDs.


Subject(s)
Autophagy , Bone Development , Lysosomal Storage Diseases/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Beclin-1/genetics , Beclin-1/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/pathology , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Multiprotein Complexes/genetics , Phosphatidylinositols/genetics , Phosphatidylinositols/metabolism , Phosphorylation/genetics , Phosphorylation/radiation effects , TOR Serine-Threonine Kinases/genetics , Ultraviolet Rays
13.
Science ; 356(6343): 1188-1192, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28619945

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) is recruited to the lysosome by Rag guanosine triphosphatases (GTPases) and regulates anabolic pathways in response to nutrients. We found that MiT/TFE transcription factors-master regulators of lysosomal and melanosomal biogenesis and autophagy-control mTORC1 lysosomal recruitment and activity by directly regulating the expression of RagD. In mice, this mechanism mediated adaptation to food availability after starvation and physical exercise and played an important role in cancer growth. Up-regulation of MiT/TFE genes in cells and tissues from patients and murine models of renal cell carcinoma, pancreatic ductal adenocarcinoma, and melanoma triggered RagD-mediated mTORC1 induction, resulting in cell hyperproliferation and cancer growth. Thus, this transcriptional regulatory mechanism enables cellular adaptation to nutrient availability and supports the energy-demanding metabolism of cancer cells.


Subject(s)
Feedback, Physiological/physiology , Gene Expression Regulation, Neoplastic , Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasms/physiopathology , Animals , Caloric Restriction , Cell Line, Tumor , Cell Proliferation/genetics , Cells, Cultured , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Liver/enzymology , Liver/physiopathology , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Mice, Inbred C57BL , Neoplasms/enzymology , Signal Transduction
14.
Mol Biol Cell ; 27(3): 572-87, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26680738

ABSTRACT

The molecular mechanisms that regulate late endosomal maturation and function are not completely elucidated, and direct evidence of a calcium sensor is lacking. Here we identify a novel mechanism of late endosomal maturation that involves a new molecular interaction between the tethering factor Munc13-4, syntaxin 7, and VAMP8. Munc13-4 binding to syntaxin 7 was significantly increased by calcium. Colocalization of Munc13-4 and syntaxin 7 at late endosomes was demonstrated by high-resolution and live-cell microscopy. Munc13-4-deficient cells show increased numbers of significantly enlarged late endosomes, a phenotype that was mimicked by the fusion inhibitor chloroquine in wild-type cells and rescued by expression of Munc13-4 but not by a syntaxin 7-binding-deficient mutant. Late endosomes from Munc13-4-KO neutrophils show decreased degradative capacity. Munc13-4-knockout neutrophils show impaired endosomal-initiated, TLR9-dependent signaling and deficient TLR9-specific CD11b up-regulation. Thus we present a novel mechanism of late endosomal maturation and propose that Munc13-4 regulates the late endocytic machinery and late endosomal-associated innate immune cellular functions.


Subject(s)
Endosomes/metabolism , Membrane Proteins/physiology , Qa-SNARE Proteins/metabolism , Toll-Like Receptor 9/physiology , Animals , CD11b Antigen/metabolism , Calcium/metabolism , HEK293 Cells , Humans , Immunity, Innate , Mice, Inbred C57BL , Neutrophils/metabolism , Protein Interaction Mapping , R-SNARE Proteins/metabolism , Signal Transduction
15.
EMBO Mol Med ; 7(2): 158-74, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25586965

ABSTRACT

Metabolite accumulation in lysosomal storage disorders (LSDs) results in impaired cell function and multi-systemic disease. Although substrate reduction and lysosomal overload-decreasing therapies can ameliorate disease progression, the significance of lysosomal overload-independent mechanisms in the development of cellular dysfunction is unknown for most LSDs. Here, we identify a mechanism of impaired chaperone-mediated autophagy (CMA) in cystinosis, a LSD caused by defects in the cystine transporter cystinosin (CTNS) and characterized by cystine lysosomal accumulation. We show that, different from other LSDs, autophagosome number is increased, but macroautophagic flux is not impaired in cystinosis while mTOR activity is not affected. Conversely, the expression and localization of the CMA receptor LAMP2A are abnormal in CTNS-deficient cells and degradation of the CMA substrate GAPDH is defective in Ctns(-/-) mice. Importantly, cysteamine treatment, despite decreasing lysosomal overload, did not correct defective CMA in Ctns(-/-) mice or LAMP2A mislocalization in cystinotic cells, which was rescued by CTNS expression instead, suggesting that cystinosin is important for CMA activity. In conclusion, CMA impairment contributes to cell malfunction in cystinosis, highlighting the need for treatments complementary to current therapies that are based on decreasing lysosomal overload.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Autophagy , Cystinosis/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomes/metabolism , Molecular Chaperones/metabolism , Amino Acid Transport Systems, Neutral/genetics , Animals , Cystine/metabolism , Cystinosis/genetics , Cystinosis/physiopathology , Humans , Lysosomal-Associated Membrane Protein 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Chaperones/genetics
16.
Mol Cell Biol ; 33(15): 2950-62, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23716592

ABSTRACT

Cystinosis is a lysosomal storage disorder caused by the accumulation of the amino acid cystine due to genetic defects in the CTNS gene, which encodes cystinosin, the lysosomal cystine transporter. Although many cellular dysfunctions have been described in cystinosis, the mechanisms leading to these defects are not well understood. Here, we show that increased lysosomal overload induced by accumulated cystine leads to cellular abnormalities, including vesicular transport defects and increased endoplasmic reticulum (ER) stress, and that correction of lysosomal transport improves cellular function in cystinosis. We found that Rab27a was expressed in proximal tubular cells (PTCs) and partially colocalized with the lysosomal marker LAMP-1. The expression of Rab27a but not other small GTPases, including Rab3 and Rab7, was downregulated in kidneys from Ctns-/- mice and in human PTCs from cystinotic patients. Using total internal reflection fluorescence microscopy, we found that lysosomal transport is impaired in Ctns-/- cells. Ctns-/- cells showed significant ER expansion and a marked increase in the unfolded protein response-induced chaperones Grp78 and Grp94. Upregulation of the Rab27a-dependent vesicular trafficking mechanisms rescued the defective lysosomal transport phenotype and reduced ER stress in cystinotic cells. Importantly, reconstitution of lysosomal transport mediated by Rab27a led to decreased lysosomal overload, manifested as reduced cystine cellular content. Our data suggest that upregulation of the Rab27a-dependent lysosomal trafficking and secretory pathways contributes to the correction of some of the cellular defects induced by lysosomal overload in cystinosis, including ER stress.


Subject(s)
Cystinosis/genetics , Cystinosis/pathology , Endoplasmic Reticulum Stress , Lysosomes/pathology , rab GTP-Binding Proteins/genetics , Amino Acid Transport Systems, Neutral/genetics , Animals , Biological Transport , Calcium/metabolism , Cell Line , Cells, Cultured , Cystine/metabolism , Cystinosis/metabolism , Down-Regulation , Endoplasmic Reticulum Chaperone BiP , Exocytosis , Humans , Lysosomes/genetics , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Up-Regulation , rab GTP-Binding Proteins/metabolism , rab27 GTP-Binding Proteins
17.
J Biol Chem ; 287(53): 44603-18, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23115246

ABSTRACT

Neutrophils use diverse mechanisms to kill pathogens including phagocytosis, exocytosis, generation of reactive oxygen species (ROS), and neutrophil extracellular traps. These mechanisms rely on their ability to mobilize intracellular organelles and to deliver granular cargoes to specific cellular compartments or into the extracellular milieu, but the molecular mechanisms regulating vesicular trafficking in neutrophils are not well understood. MUNC13-4 is a RAB27A effector that coordinates exocytosis in hematopoietic cells, and its deficiency is associated with the human immunodeficiency familial hemophagocytic lymphohistiocytosis type 3. In this work, we have established an essential role for MUNC13-4 in selective vesicular trafficking, phagosomal maturation, and intracellular bacterial killing in neutrophils. Using neutrophils from munc13-4 knock-out (KO) mice, we show that MUNC13-4 is necessary for the regulation of p22(phox)-expressing granule trafficking to the plasma membrane and regulates extracellular ROS production. MUNC13-4 was also essential for the regulation of intracellular ROS production induced by Pseudomonas aeruginosa despite normal trafficking of p22(phox)-expressing vesicles toward the phagosome. Importantly, in the absence of MUNC13-4, phagosomal maturation was impaired as observed by the defective delivery of azurophilic granules and multivesicular bodies to the phagosome. Significantly, this mechanism was intact in RAB27A KO neutrophils. Intracellular bacterial killing was markedly impaired in MUNC13-4 KO neutrophils. MUNC13-4-deficient cells showed a significant increase in neutrophil extracellular trap formation but were unable to compensate for the impaired bacterial killing. Altogether, these findings characterize novel functions of MUNC13-4 in the innate immune response of the neutrophil and have direct implications for the understanding of immunodeficiencies in patients with MUNC13-4 deficiency.


Subject(s)
Membrane Proteins/immunology , Neutrophils/immunology , Phagosomes/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/physiology , Animals , Cells, Cultured , Humans , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress , Phagocytosis , Pseudomonas Infections/genetics , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/immunology , Reactive Oxygen Species/immunology
18.
Mol Biol Cell ; 23(10): 1902-16, 2012 May.
Article in English | MEDLINE | ID: mdl-22438581

ABSTRACT

Cytoskeleton remodeling is important for the regulation of vesicular transport associated with exocytosis, but a direct association between granular secretory proteins and actin-remodeling molecules has not been shown, and this mechanism remains obscure. Using a proteomic approach, we identified the RhoA-GTPase-activating protein Gem-interacting protein (GMIP) as a factor that associates with the Rab27a effector JFC1 and modulates vesicular transport and exocytosis. GMIP down-regulation induced RhoA activation and actin polymerization. Importantly, GMIP-down-regulated cells showed impaired vesicular transport and exocytosis, while inhibition of the RhoA-signaling pathway induced actin depolymerization and facilitated exocytosis. We show that RhoA activity polarizes around JFC1-containing secretory granules, suggesting that it may control directionality of granule movement. Using quantitative live-cell microscopy, we show that JFC1-containing secretory organelles move in areas near the plasma membrane deprived of polymerized actin and that dynamic vesicles maintain an actin-free environment in their surroundings. Supporting a role for JFC1 in RhoA inactivation and actin remodeling during exocytosis, JFC1 knockout neutrophils showed increased RhoA activity, and azurophilic granules were unable to traverse cortical actin in cells lacking JFC1. We propose that during exocytosis, actin depolymerization commences near the secretory organelle, not the plasma membrane, and that secretory granules use a JFC1- and GMIP-dependent molecular mechanism to traverse cortical actin.


Subject(s)
GTPase-Activating Proteins/metabolism , Membrane Proteins/metabolism , Secretory Pathway , Secretory Vesicles/metabolism , rab GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Actin Cytoskeleton/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Exocytosis , GTPase-Activating Proteins/genetics , Granulocytes/metabolism , Humans , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Neutrophils/metabolism , Neutrophils/ultrastructure , Primary Cell Culture , Protein Binding , Protein Multimerization , Secretory Vesicles/ultrastructure , Signal Transduction , rab27 GTP-Binding Proteins
19.
Infect Immun ; 79(9): 3607-18, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21746860

ABSTRACT

Genetic defects in the Rab27a or Munc13-4 gene lead to immunodeficiencies in humans, characterized by frequent viral and bacterial infections. However, the role of Rab27a and Munc13-4 in the regulation of systemic inflammation initiated by Gram-negative bacterium-derived pathogenic molecules is currently unknown. Using a model of lipopolysaccharide-induced systemic inflammation, we show that Rab27a-deficient (Rab27a(ash/ash)) mice are resistant to lipopolysaccharide (LPS)-induced death, while Munc13-4-deficient (Munc13-4(jinx/jinx)) mice show only moderate protection. Rab27a(ash/ash) but not Munc13-4(jinx/jinx) mice showed significantly decreased tumor necrosis factor alpha (TNF-α) plasma levels after LPS administration. Neutrophil sequestration in lungs from Rab27a(ash/ash) and Munc13-4(jinx/jinx) LPS-treated mice was similar to that observed for wild-type mice. In contrast, Rab27a- but not Munc13-4-deficient mice showed decreased neutrophil infiltration in liver and failed to undergo LPS-induced neutropenia. Decreased liver infiltration in Rab27a(ash/ash) mice was accompanied by lower CD44 but normal CD11a and CD11b expression in neutrophils. Both Rab27a- and Munc13-4-deficient mice showed decreased azurophilic granule secretion in vivo, suggesting that impaired liver infiltration and improved survival in Rab27a(ash/ash) mice is not fully explained by deficient exocytosis of this granule subset. Altogether, our data indicate that Rab27a but not Munc13-4 plays an important role in neutrophil recruitment to liver and LPS-induced death during endotoxemia, thus highlighting a previously unrecognized role for Rab27a in LPS-mediated systemic inflammation.


Subject(s)
Inflammation/immunology , Lipopolysaccharides/immunology , Liver/immunology , Membrane Proteins/physiology , Neutrophil Infiltration , rab GTP-Binding Proteins/physiology , Animals , CD11a Antigen/biosynthesis , CD11b Antigen/biosynthesis , Cell Adhesion Molecules/biosynthesis , Cytoplasmic Granules/immunology , Hyaluronan Receptors/biosynthesis , Lung/immunology , Lymphocyte Activation , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutropenia/chemically induced , Neutrophils/immunology , Neutrophils/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/blood , rab GTP-Binding Proteins/deficiency , rab GTP-Binding Proteins/genetics , rab27 GTP-Binding Proteins
20.
J Biol Chem ; 286(7): 5647-56, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21148308

ABSTRACT

LPS is an efficient sensitizer of the neutrophil exocytic response to a second stimulus. Although neutrophil exocytosis in response to pathogen-derived molecules plays an important role in the innate immune response to infections, the molecular mechanism underlying LPS-dependent regulation of neutrophil exocytosis is currently unknown. The small GTPase Rab27a and its effector Munc13-4 regulate exocytosis in hematopoietic cells. Whether Rab27a and Munc13-4 modulate discrete steps or the same steps during exocytosis also remains unknown. Here, using Munc13-4- and Rab27a-deficient neutrophils, we analyzed the mechanism of lipopolysaccharide-dependent vesicular priming to amplify exocytosis of azurophilic granules. We found that both Munc13-4 and Rab27a are necessary to mediate LPS-dependent priming of exocytosis. However, we show that LPS-induced mobilization of a small population of readily releasable vesicles is a Munc13-4-dependent but Rab27a-independent process. LPS-induced priming regulation could not be fully explained by secretory organelle maturation as the redistribution of the secretory proteins Rab27a or Munc13-4 in response to LPS treatment was minimal. Using total internal reflection fluorescence microscopy and a novel mouse model expressing EGFP-Rab27a under the endogenous Rab27a promoter but lacking Munc13-4, we demonstrate that Munc13-4 is essential for the mechanism of LPS-dependent exocytosis in neutrophils and unraveled a novel mechanism of vesicular dynamics in which Munc13-4 restricts motility of Rab27a-expressing vesicles to facilitate lipopolysaccharide-induced priming of exocytosis.


Subject(s)
Exocytosis/drug effects , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , Membrane Proteins/metabolism , Neutrophils/metabolism , Secretory Vesicles/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Exocytosis/physiology , Gene Expression Regulation/physiology , Membrane Proteins/genetics , Mice , Mice, Mutant Strains , Neutrophils/ultrastructure , Secretory Vesicles/genetics , Secretory Vesicles/ultrastructure , rab GTP-Binding Proteins/genetics , rab27 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...