Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Nat Neurosci ; 27(2): 219-231, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38216650

ABSTRACT

In the nervous system, only one type of neuron-glial synapse is known to exist: that between neurons and oligodendrocyte precursor cells (OPCs), yet their composition, assembly, downstream signaling and in vivo functions remain largely unclear. Here, we address these questions using in vivo microscopy in zebrafish spinal cord and identify postsynaptic molecules PSD-95 and gephyrin in OPCs. The puncta containing these molecules in OPCs increase during early development and decrease upon OPC differentiation. These puncta are highly dynamic and frequently assemble at 'hotspots'. Gephyrin hotspots and synapse-associated Ca2+ activity in OPCs predict where a subset of myelin sheaths forms in differentiated oligodendrocytes. Further analyses reveal that spontaneous synaptic release is integral to OPC Ca2+ activity, while evoked synaptic release contributes only in early development. Finally, disruption of the synaptic genes dlg4a/dlg4b, gphnb and nlgn3b impairs OPC differentiation and myelination. Together, we propose that neuron-OPC synapses are dynamically assembled and can predetermine myelination patterns through Ca2+ signaling.


Subject(s)
Myelin Sheath , Oligodendrocyte Precursor Cells , Animals , Myelin Sheath/physiology , Zebrafish , Oligodendroglia/physiology , Neurons/physiology , Cell Differentiation/physiology
2.
Neuron ; 112(1): 93-112.e10, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38096817

ABSTRACT

Astrocytes play crucial roles in regulating neural circuit function by forming a dense network of synapse-associated membrane specializations, but signaling pathways regulating astrocyte morphogenesis remain poorly defined. Here, we show the Drosophila lipid-binding G protein-coupled receptor (GPCR) Tre1 is required for astrocytes to establish their intricate morphology in vivo. The lipid phosphate phosphatases Wunen/Wunen2 also regulate astrocyte morphology and, via Tre1, mediate astrocyte-astrocyte competition for growth-promoting lipids. Loss of s1pr1, the functional analog of Tre1 in zebrafish, disrupts astrocyte process elaboration, and live imaging and pharmacology demonstrate that S1pr1 balances proper astrocyte process extension/retraction dynamics during growth. Loss of Tre1 in flies or S1pr1 in zebrafish results in defects in simple assays of motor behavior. Tre1 and S1pr1 are thus potent evolutionarily conserved regulators of the elaboration of astrocyte morphological complexity and, ultimately, astrocyte control of behavior.


Subject(s)
Drosophila Proteins , Zebrafish , Animals , Astrocytes/metabolism , Drosophila/metabolism , Drosophila Proteins/metabolism , Phospholipids/metabolism , Receptors, G-Protein-Coupled/metabolism , Sphingosine-1-Phosphate Receptors/metabolism
3.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961336

ABSTRACT

Schwann cells, the myelinating glia of the peripheral nervous system (PNS), are critical for myelin development, maintenance, and repair. Rac1 is a known regulator of radial sorting, a key step in developmental myelination, and we previously showed in zebrafish that loss of Dock1, a Rac1-specific guanine nucleotide exchange factor, results in delayed peripheral myelination in development. We demonstrate here that Dock1 is necessary for myelin maintenance and remyelination after injury in adult zebrafish. Furthermore, it performs an evolutionary conserved role in mice, acting cell-autonomously in Schwann cells to regulate peripheral myelin development, maintenance, and repair. Additionally, manipulating Rac1 levels in larval zebrafish reveals that dock1 mutants are sensitized to inhibition of Rac1, suggesting an interaction between the two proteins during PNS development. We propose that the interplay between Dock1 and Rac1 signaling in Schwann cells is required to establish, maintain, and facilitate repair and remyelination within the peripheral nervous system.

4.
Front Cell Neurosci ; 17: 1158388, 2023.
Article in English | MEDLINE | ID: mdl-37091921

ABSTRACT

Since SARM1 mutations have been identified in human neurological disease, SARM1 inhibition has become an attractive therapeutic strategy to preserve axons in a variety of disorders of the peripheral (PNS) and central nervous system (CNS). While SARM1 has been extensively studied in neurons, it remains unknown whether SARM1 is present and functional in myelinating glia? This is an important question to address. Firstly, to identify whether SARM1 dysfunction in other cell types in the nervous system may contribute to neuropathology in SARM1 dependent diseases? Secondly, to ascertain whether therapies altering SARM1 function may have unintended deleterious impacts on PNS or CNS myelination? Surprisingly, we find that oligodendrocytes express sarm1 mRNA in the zebrafish spinal cord and that SARM1 protein is readily detectable in rodent oligodendrocytes in vitro and in vivo. Furthermore, activation of endogenous SARM1 in cultured oligodendrocytes induces rapid cell death. In contrast, in peripheral glia, SARM1 protein is not detectable in Schwann cells and satellite glia in vivo and sarm1/Sarm1 mRNA is detected at very low levels in Schwann cells, in vivo, in zebrafish and mouse. Application of specific SARM1 activators to cultured mouse Schwann cells does not induce cell death and nicotinamide adenine dinucleotide (NAD) levels remain unaltered suggesting Schwann cells likely contain no functionally relevant levels of SARM1. Finally, we address the question of whether SARM1 is required for myelination or myelin maintenance. In the zebrafish and mouse PNS and CNS, we show that SARM1 is not required for initiation of myelination and myelin sheath maintenance is unaffected in the adult mouse nervous system. Thus, strategies to inhibit SARM1 function to treat neurological disease are unlikely to perturb myelination in humans.

5.
Cell Chem Biol ; 29(10): 1541-1555.e7, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36126653

ABSTRACT

Therapies that promote neuroprotection and axonal survival by enhancing myelin regeneration are an unmet need to prevent disability progression in multiple sclerosis. Numerous potentially beneficial compounds have originated from phenotypic screenings but failed in clinical trials. It is apparent that current cell- and animal-based disease models are poor predictors of positive treatment options, arguing for novel experimental approaches. Here we explore the experimental power of humanized zebrafish to foster the identification of pro-remyelination compounds via specific inhibition of GPR17. Using biochemical and imaging techniques, we visualize the expression of zebrafish (zf)-gpr17 during the distinct stages of oligodendrocyte development, thereby demonstrating species-conserved expression between zebrafish and mammals. We also demonstrate species-conserved function of zf-Gpr17 using genetic loss-of-function and rescue techniques. Finally, using GPR17-humanized zebrafish, we provide proof of principle for in vivo analysis of compounds acting via targeted inhibition of human GPR17. We anticipate that GPR17-humanized zebrafish will markedly improve the search for effective pro-myelinating pharmacotherapies.


Subject(s)
Oligodendroglia , Prodrugs , Animals , Humans , Zebrafish/metabolism , Prodrugs/metabolism , Nerve Tissue Proteins/metabolism , Cell Differentiation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Disease Models, Animal , Mammals/metabolism
6.
Dev Biol ; 490: 37-49, 2022 10.
Article in English | MEDLINE | ID: mdl-35820658

ABSTRACT

The vertebrate peripheral nervous system (PNS) is an intricate network that conveys sensory and motor information throughout the body. During development, extracellular cues direct the migration of axons and glia through peripheral tissues. Currently, the suite of molecules that govern PNS axon-glial patterning is incompletely understood. To elucidate factors that are critical for peripheral nerve development, we characterized the novel zebrafish mutant, stl159, that exhibits abnormalities in PNS patterning. In these mutants, motor and sensory nerves that develop adjacent to axial muscle fail to extend normally, and neuromasts in the posterior lateral line system, as well as neural crest-derived melanocytes, are incorrectly positioned. The stl159 genetic lesion lies in the basic helix-loop-helix (bHLH) transcription factor tcf15, which has been previously implicated in proper development of axial muscles. We find that targeted loss of tcf15 via CRISPR-Cas9 genome editing results in the PNS patterning abnormalities observed in stl159 mutants. Because tcf15 is expressed in developing muscle prior to nerve extension, rather than in neurons or glia, we predict that tcf15 non-cell-autonomously promotes peripheral nerve patterning in zebrafish through regulation of extracellular patterning cues. Our work underscores the importance of muscle-derived factors in PNS development.


Subject(s)
Peripheral Nerves , Zebrafish , Animals , Axons/physiology , Basic Helix-Loop-Helix Transcription Factors , Muscles , Peripheral Nervous System , Zebrafish/genetics
7.
Mult Scler ; 28(3): 331-345, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35236198

ABSTRACT

BACKGROUND: Multiple Sclerosis (MS) is a growing global health challenge affecting nearly 3 million people. Progress has been made in the understanding and treatment of MS over the last several decades, but cures remain elusive. The National MS Society is focused on achieving cures for MS. OBJECTIVES: Cures for MS will be hastened by having a roadmap that describes knowledge gaps, milestones, and research priorities. In this report, we share the Pathways to Cures Research Roadmap and recommendations for strategies to accelerate the development of MS cures. METHODS: The Roadmap was developed through engagement of scientific thought leaders and people affected by MS from North America and the United Kingdom. It also included the perspectives of over 300 people living with MS and was endorsed by many leading MS organizations. RESULTS: The Roadmap consist of three distinct but overlapping cure pathways: (1) stopping the MS disease process, (2) restoring lost function by reversing damage and symptoms, and (3) ending MS through prevention. Better alignment and focus of global resources on high priority research questions are also recommended. CONCLUSIONS: We hope the Roadmap will inspire greater collaboration and alignment of global resources that accelerate scientific breakthroughs leading to cures for MS.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/therapy , North America , United Kingdom
8.
Neuron ; 109(4): 576-596, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33385325

ABSTRACT

Astrocytes are a large and diverse population of morphologically complex cells that exist throughout nervous systems of multiple species. Progress over the last two decades has shown that astrocytes mediate developmental, physiological, and pathological processes. However, a long-standing open question is how astrocytes regulate neural circuits in ways that are behaviorally consequential. In this regard, we summarize recent studies using Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, and Mus musculus. The data reveal diverse astrocyte mechanisms operating in seconds or much longer timescales within neural circuits and shaping multiple behavioral outputs. We also refer to human diseases that have a known primary astrocytic basis. We suggest that including astrocytes in mechanistic, theoretical, and computational studies of neural circuits provides new perspectives to understand behavior, its regulation, and its disease-related manifestations.


Subject(s)
Astrocytes/metabolism , Mental Disorders/metabolism , Nerve Net/metabolism , Neurons/metabolism , Animals , Astrocytes/pathology , Caenorhabditis elegans , Drosophila , Humans , Mental Disorders/genetics , Mental Disorders/pathology , Mice , Nerve Net/pathology , Neurons/pathology , Species Specificity , Zebrafish
9.
Dev Biol ; 471: 18-33, 2021 03.
Article in English | MEDLINE | ID: mdl-33290818

ABSTRACT

The spine gives structural support for the adult body, protects the spinal cord, and provides muscle attachment for moving through the environment. The development and maturation of the spine and its physiology involve the integration of multiple musculoskeletal tissues including bone, cartilage, and fibrocartilaginous joints, as well as innervation and control by the nervous system. One of the most common disorders of the spine in human is adolescent idiopathic scoliosis (AIS), which is characterized by the onset of an abnormal lateral curvature of the spine of <10° around adolescence, in otherwise healthy children. The genetic basis of AIS is largely unknown. Systematic genome-wide mutagenesis screens for embryonic phenotypes in zebrafish have been instrumental in the understanding of early patterning of embryonic tissues necessary to build and pattern the embryonic spine. However, the mechanisms required for postembryonic maturation and homeostasis of the spine remain poorly understood. Here we report the results from a small-scale forward genetic screen for adult-viable recessive and dominant zebrafish mutations, leading to overt morphological abnormalities of the adult spine. Germline mutations induced with N-ethyl N-nitrosourea (ENU) were transmitted and screened for dominant phenotypes in 1229 F1 animals, and subsequently bred to homozygosity in F3 families; from these, 314 haploid genomes were screened for adult-viable recessive phenotypes affecting general body shape. We cumulatively found 40 adult-viable (3 dominant and 37 recessive) mutations each leading to a defect in the morphogenesis of the spine. The largest phenotypic group displayed larval onset axial curvatures, leading to whole-body scoliosis without vertebral dysplasia in adult fish. Pairwise complementation testing of 16 mutant lines within this phenotypic group revealed at least 9 independent mutant loci. Using massively-parallel whole genome or whole exome sequencing and meiotic mapping we defined the molecular identity of several loci for larval onset whole-body scoliosis in zebrafish. We identified a new mutation in the skolios/kinesin family member 6 (kif6) gene, causing neurodevelopmental and ependymal cilia defects in mouse and zebrafish. We also report multiple recessive alleles of the scospondin and a disintegrin and metalloproteinase with thrombospondin motifs 9 (adamts9) genes, which all display defects in spine morphogenesis. Our results provide evidence of monogenic traits that are essential for normal spine development in zebrafish, that may help to establish new candidate risk loci for spine disorders in humans.


Subject(s)
Germ-Line Mutation , Spine/growth & development , Zebrafish Proteins , Zebrafish , Animals , Embryo, Nonmammalian/embryology , Genome , Humans , Neurogenesis/genetics , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
10.
Nat Neurosci ; 23(10): 1297-1306, 2020 10.
Article in English | MEDLINE | ID: mdl-32895565

ABSTRACT

How astrocytes grow and integrate into neural circuits remains poorly defined. Zebrafish are well suited for such investigations, but bona fide astrocytes have not been described in this system. Here we characterize a zebrafish cell type that is remarkably similar to mammalian astrocytes that derive from radial glial cells and elaborate processes to establish their territories at early larval stages. Zebrafish astrocytes associate closely with synapses, tile with one another and express markers, including Glast and glutamine synthetase. Once integrated into circuits, they exhibit whole-cell and microdomain Ca2+ transients, which are sensitive to norepinephrine. Finally, using a cell-specific CRISPR-Cas9 approach, we demonstrate that fgfr3 and fgfr4 are required for vertebrate astrocyte morphogenesis. This work provides the first visualization of astrocyte morphogenesis from stem cell to post-mitotic astrocyte in vivo, identifies a role for Fgf receptors in vertebrate astrocytes and establishes zebrafish as a valuable new model system to study astrocyte biology in vivo.


Subject(s)
Astrocytes/physiology , Brain/growth & development , Ependymoglial Cells/physiology , Morphogenesis , Neurons/physiology , Spinal Cord/growth & development , Zebrafish/growth & development , Animals , Calcium Signaling , Neural Pathways/physiology , Receptor, Fibroblast Growth Factor, Type 3/physiology , Receptor, Fibroblast Growth Factor, Type 4/physiology , Synapses/physiology , Zebrafish Proteins/physiology
11.
Nat Commun ; 11(1): 194, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924782

ABSTRACT

Many drugs target the extracellular regions (ECRs) of cell-surface receptors. The large and alternatively-spliced ECRs of adhesion G protein-coupled receptors (aGPCRs) have key functions in diverse biological processes including neurodevelopment, embryogenesis, and tumorigenesis. However, their structures and mechanisms of action remain unclear, hampering drug development. The aGPCR Gpr126/Adgrg6 regulates Schwann cell myelination, ear canal formation, and heart development; and GPR126 mutations cause myelination defects in human. Here, we determine the structure of the complete zebrafish Gpr126 ECR and reveal five domains including a previously unknown domain. Strikingly, the Gpr126 ECR adopts a closed conformation that is stabilized by an alternatively spliced linker and a conserved calcium-binding site. Alternative splicing regulates ECR conformation and receptor signaling, while mutagenesis of the calcium-binding site abolishes Gpr126 function in vivo. These results demonstrate that Gpr126 ECR utilizes a multi-faceted dynamic approach to regulate receptor function and provide relevant insights for ECR-targeted drug design.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Alternative Splicing , Animals , Binding Sites , Crystallography, X-Ray , Drug Design , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Models, Molecular , Protein Conformation , Protein Domains , Schwann Cells/metabolism , Zebrafish/genetics , Zebrafish/metabolism
12.
Glia ; 68(6): 1182-1200, 2020 06.
Article in English | MEDLINE | ID: mdl-31873966

ABSTRACT

Gpr126/Adgrg6 is an adhesion G protein-coupled receptor essential for Schwann cell (SC) myelination with important contributions to repair after nerve crush injury. Despite critical functions in myelinating SCs, the role of Gpr126 within nonmyelinating terminal Schwann cells (tSCs) at the neuromuscular junction (NMJ), is not known. tSCs have important functions in synaptic maintenance and reinnervation, and after injury tSCs extend cytoplasmic processes to guide regenerating axons to the denervated NMJ. In this study, we show that Gpr126 is expressed in tSCs, and that absence of Gpr126 in SCs (SC-specific Gpr126 knockout, cGpr126) results in a NMJ maintenance defect in the hindlimbs of aged mice, but not in young adult mice. After nerve transection and repair, cGpr126 mice display delayed NMJ reinnervation, altered tSC morphology with decreased S100ß expression, and reduced tSC cytoplasmic process extensions. The immune response promoting reinnervation at the NMJ following nerve injury is also altered with decreased macrophage infiltration, Tnfα, and anomalous cytokine expression compared to NMJs of control mice. In addition, Vegfa expression is decreased in muscle, suggesting that cGpr126 non-cell autonomously modulates angiogenesis after nerve injury. In sum, cGpr126 mice demonstrated delayed NMJ reinnervation and decreased muscle mass following nerve transection and repair compared to control littermates. The integral function of Gpr126 in tSCs at the NMJ provides the framework for new therapeutic targets for neuromuscular disease.


Subject(s)
Neuromuscular Junction/metabolism , Peripheral Nerve Injuries/metabolism , Receptors, G-Protein-Coupled/metabolism , Schwann Cells/metabolism , Animals , Mice , Muscle, Skeletal/physiopathology , Nerve Regeneration/physiology , Neuromuscular Junction/physiopathology , Receptors, Cholinergic/metabolism
13.
J Biol Chem ; 294(50): 19246-19254, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31628191

ABSTRACT

Adhesion G protein-coupled receptors (aGPCRs) represent a distinct family of GPCRs that regulate several developmental and physiological processes. Most aGPCRs undergo GPCR autoproteolysis-inducing domain-mediated protein cleavage, which produces a cryptic tethered agonist (termed Stachel (stinger)), and cleavage-dependent and -independent aGPCR signaling mechanisms have been described. aGPCR G1 (ADGRG1 or G protein-coupled receptor 56 (GPR56)) has pleiotropic functions in the development of multiple organ systems, which has broad implications for human diseases. To date, two natural GPR56 ligands, collagen III and tissue transglutaminase (TG2), and one small-molecule agonist, 3-α-acetoxydihydrodeoxygedunin (3-α-DOG), have been identified, in addition to a synthetic peptide, P19, that contains seven amino acids of the native Stachel sequence. However, the mechanisms by which these natural and small-molecule agonists signal through GPR56 remain unknown. Here we engineered a noncleavable receptor variant that retains signaling competence via the P19 peptide. We demonstrate that both natural and small-molecule agonists can activate only cleaved GPR56. Interestingly, TG2 required both receptor cleavage and the presence of a matrix protein, laminin, to activate GPR56, whereas collagen III and 3-α-DOG signaled without any cofactors. On the other hand, both TG2/laminin and collagen III activate the receptor by dissociating the N-terminal fragment from its C-terminal fragment, enabling activation by the Stachel sequence, whereas P19 and 3-α-DOG initiate downstream signaling without disengaging the N-terminal fragment from its C-terminal fragment. These findings deepen our understanding of how GPR56 signals via natural ligands, and a small-molecule agonist may be broadly applicable to other aGPCR family members.


Subject(s)
Limonins/pharmacology , Receptors, G-Protein-Coupled/agonists , Small Molecule Libraries/pharmacology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Female , HEK293 Cells , Humans , Ligands , Limonins/chemistry , Male , Mice , Mice, Knockout , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/metabolism , Small Molecule Libraries/chemistry , Structure-Activity Relationship
14.
Ann N Y Acad Sci ; 1456(1): 44-63, 2019 11.
Article in English | MEDLINE | ID: mdl-31529518

ABSTRACT

Gpr126/Adgrg6, an adhesion family G protein-coupled receptor (aGPCR), is required for the development of myelinating Schwann cells in the peripheral nervous system. Myelin supports and insulates vertebrate axons to permit rapid signal propagation throughout the nervous system. In mammals and zebrafish, mutations in Gpr126 arrest Schwann cells at early developmental stages. We exploited the optical and pharmacological tractability of larval zebrafish to uncover drugs that mediate myelination by activating Gpr126 or functioning in parallel. Using a fluorescent marker of mature myelinating glia (Tg[mbp:EGFP-CAAX]), we screened hypomorphic gpr126 mutant larvae for restoration of myelin basic protein (mbp) expression along peripheral nerves following small molecule treatment. Our screens identified five compounds sufficient to promote mbp expression in gpr126 hypomorphs. Using an allelic series of gpr126 mutants, we parsed the ability of small molecules to restore mbp, suggesting differences in drug efficacy dependent on Schwann cell developmental state. Finally, we identify apomorphine hydrochloride as a direct small molecule activator of Gpr126 using combined in vivo/in vitro assays and show that aporphine class compounds promote Schwann cell development in vivo. Our results demonstrate the utility of in vivo screening for aGPCR modulators and identify small molecules that interact with the gpr126-mediated myelination program.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Schwann Cells/cytology , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Zebrafish Proteins/metabolism , Alleles , Animals , Dose-Response Relationship, Drug , Receptors, G-Protein-Coupled/genetics , Schwann Cells/metabolism , Zebrafish , Zebrafish Proteins/genetics
15.
J Cell Biol ; 218(9): 2824-2825, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31451614

ABSTRACT

Many cell adhesion molecules are present along myelinated axons and in myelinating glia, but functional interactions among these proteins have not been fully elucidated. In this issue, Elazar et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201906099) report that distinct adhesion proteins act in coordination to ensure accurate myelination.


Subject(s)
Myelin Sheath , Oligodendroglia , Axons , Cell Adhesion Molecules , Neuroglia
16.
Science ; 365(6454): 641-642, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31416950
17.
Nat Commun ; 10(1): 2976, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31278268

ABSTRACT

In the central nervous system (CNS), oligodendrocytes myelinate multiple axons; in the peripheral nervous system (PNS), Schwann cells (SCs) myelinate a single axon. Why are the myelinating potentials of these glia so fundamentally different? Here, we find that loss of Fbxw7, an E3 ubiquitin ligase component, enhances the myelinating potential of SCs. Fbxw7 mutant SCs make thicker myelin sheaths and sometimes appear to myelinate multiple axons in a fashion reminiscent of oligodendrocytes. Several Fbxw7 mutant phenotypes are due to dysregulation of mTOR; however, the remarkable ability of mutant SCs to ensheathe multiple axons is independent of mTOR signaling. This indicates distinct roles for Fbxw7 in SC biology including modes of axon interactions previously thought to fundamentally distinguish myelinating SCs from oligodendrocytes. Our data reveal unexpected plasticity in the myelinating potential of SCs, which may have important implications for our understanding of both PNS and CNS myelination and myelin repair.


Subject(s)
Axons/physiology , F-Box-WD Repeat-Containing Protein 7/metabolism , Myelin Sheath/physiology , Animals , Axons/ultrastructure , F-Box-WD Repeat-Containing Protein 7/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Models, Animal , Myelin Sheath/ultrastructure , Sciatic Nerve/cytology , Sciatic Nerve/ultrastructure
18.
Ann N Y Acad Sci ; 1456(1): 5-25, 2019 11.
Article in English | MEDLINE | ID: mdl-31168816

ABSTRACT

The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Humans , Receptors, G-Protein-Coupled/chemistry
19.
Neural Dev ; 13(1): 17, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30089513

ABSTRACT

BACKGROUND: In the peripheral nervous system (PNS), specialized glial cells called Schwann cells produce myelin, a lipid-rich insulating sheath that surrounds axons and promotes rapid action potential propagation. During development, Schwann cells must undergo extensive cytoskeletal rearrangements in order to become mature, myelinating Schwann cells. The intracellular mechanisms that drive Schwann cell development, myelination, and accompanying cell shape changes are poorly understood. METHODS: Through a forward genetic screen in zebrafish, we identified a mutation in the atypical guanine nucleotide exchange factor, dock1, that results in decreased myelination of peripheral axons. Rescue experiments and complementation tests with newly engineered alleles confirmed that mutations in dock1 cause defects in myelination of the PNS. Whole mount in situ hybridization, transmission electron microscopy, and live imaging were used to fully define mutant phenotypes. RESULTS: We show that Schwann cells in dock1 mutants can appropriately migrate and are not decreased in number, but exhibit delayed radial sorting and decreased myelination during early stages of development. CONCLUSIONS: Together, our results demonstrate that mutations in dock1 result in defects in Schwann cell development and myelination. Specifically, loss of dock1 delays radial sorting and myelination of peripheral axons in zebrafish.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Lateral Line System/cytology , Mutation/genetics , Schwann Cells/physiology , Zebrafish Proteins/genetics , rac GTP-Binding Proteins/genetics , Age Factors , Animals , Animals, Genetically Modified , Embryo, Nonmammalian , Lateral Line System/embryology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microinjections , Microscopy, Electron, Transmission , Myelin Basic Protein/metabolism , Peripheral Nervous System/cytology , Peripheral Nervous System/embryology , RNA, Messenger/metabolism , Schwann Cells/ultrastructure , Zebrafish , Zebrafish Proteins/metabolism , rac GTP-Binding Proteins/metabolism
20.
eNeuro ; 5(2)2018.
Article in English | MEDLINE | ID: mdl-29766046

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) is known to regulate cellular growth pathways, and its genetic activation is sufficient to enhance regenerative axon growth following injury to the central or peripheral nervous systems. However, excess mTORC1 activation may promote innervation defects, and mTORC1 activity mediates injury-induced hypersensitivity, reducing enthusiasm for the pathway as a therapeutic target. While mTORC1 activity is required for full expression of some pain modalities, the effects of pathway activation on nociceptor phenotypes and sensory behaviors are currently unknown. To address this, we genetically activated mTORC1 in mouse peripheral sensory neurons by conditional deletion of its negative regulator Tuberous Sclerosis Complex 2 (Tsc2). Consistent with the well-known role of mTORC1 in regulating cell size, soma size and axon diameter of C-nociceptors were increased in Tsc2-deleted mice. Glabrous skin and spinal cord innervation by C-fiber neurons were also disrupted. Transcriptional profiling of nociceptors enriched by fluorescence-associated cell sorting (FACS) revealed downregulation of multiple classes of ion channels as well as reduced expression of markers for peptidergic nociceptors in Tsc2-deleted mice. In addition to these changes in innervation and gene expression, Tsc2-deleted mice exhibited reduced noxious heat sensitivity and decreased injury-induced cold hypersensitivity, but normal baseline sensitivity to cold and mechanical stimuli. Together, these data show that excess mTORC1 activity in sensory neurons produces changes in gene expression, neuron morphology and sensory behavior.


Subject(s)
Ganglia, Spinal/metabolism , Hypesthesia/metabolism , Ion Channels/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Nerve Fibers, Unmyelinated/metabolism , Nociception/physiology , Nociceptors/physiology , Peripheral Nerve Injuries/metabolism , Sensory Receptor Cells/metabolism , Skin/innervation , Animals , Behavior, Animal/physiology , Disease Models, Animal , Female , Ganglia, Spinal/pathology , Ganglia, Spinal/physiopathology , Hot Temperature , Hypesthesia/pathology , Hypesthesia/physiopathology , Male , Mice , Mice, Transgenic , Nerve Fibers, Unmyelinated/pathology , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/physiopathology , Sensory Receptor Cells/pathology , Tuberous Sclerosis Complex 2 Protein/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...