Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Monit Assess ; 196(9): 860, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207545

ABSTRACT

The Water Framework Directive (WFD) requires member states to routinely assess the river ecological status using community-based indices. However, there is still a lack of published WFD-compliant methods for the French West Indies, especially using diatom-based indices. Martinique and Guadeloupe exhibit diverse landscapes shaped by their complex geological history and tropical climatic conditions. These strong particularities make the existing indices developed for the European mainland unusable. Based on diatom sampling from to 2013 (607 samples) and through multivariate analyses, we developed the Indice Diatomique des Antilles (IDA). We first identified the key abiotic factors influencing diatom communities on both islands, and then characterized taxon sensitivity by considering their presence probability along a pressure gradient.. The index was based on the presence and relative abundance of these taxa in each sample. The last step consisted of using new data from the 2014-2022 sampling surveys (457 samples) as a validation dataset to verify IDA accuracy. Our results suggest that the IDA methodology is well designed to assess the ecological status of rivers in the West Indies.


Subject(s)
Diatoms , Environmental Monitoring , Rivers , Diatoms/classification , Rivers/chemistry , Environmental Monitoring/methods , Guadeloupe , Ecosystem , Biodiversity , Martinique , West Indies
2.
Mar Pollut Bull ; 170: 112646, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34225197

ABSTRACT

Seagrass beds are increasingly impacted by human activities in coastal areas, particularly in tropical regions. The objective of this research program was to study seagrass beds characteristics under various environmental conditions in the French Antilles (FA, Caribbean Sea). A total of 61 parameters, from plant physiology to seagrass ecosystem, were tested along a gradient of anthropogenic conditions, distributed across 11 sites and 3 islands of the FA. A selection of 7 parameters was identified as relevant for the monitoring of seagrass meadows in the framework of public policies. They combined "early warning indicators" (e.g. nutrients and some trace metals) and long-term responding parameters (e.g. shoot density) adapted to management time scales. The ecological status of seagrass meadows was evaluated using a PCA. This work is a first step towards monitoring and management of seagrass meadows in the FA.


Subject(s)
Ecosystem , Trace Elements , Caribbean Region , Human Activities , Humans , West Indies
3.
Sci Total Environ ; 763: 144208, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33385843

ABSTRACT

Aquatic biofilms are heterogeneous assemblages of microorganisms surrounded by a matrix of extracellular polymeric substances (EPS). Recent studies suggest that aquatic biofilms can physically act as sorptive sponges of DNA. We took the opportunity from already available samples of stone biofilms and macroinvertebrates specimens collected in parallel at the same sites to test the capacity of biofilms to act as DNA samplers of macroinvertebrate communities in streams. Macroinvertebrate communities are usually studied with metabarcoding using the DNA extracted from their bodies bulk samples, which remains a time-consuming approach and involves the destruction of all individual specimens from the samples. The ability of biofilms to capture DNA was explored on 19 rivers sites of a tropical island (Mayotte Island, France). First, macroinvertebrate specimens were identified based on their morphological characteristics. Second, DNA was extracted from biofilms, and macroinvertebrate communities were targeted using a standard COI barcode. The resulting morphological and molecular inventories were compared. They provided comparable structures and diversities for macroinvertebrate communities when one is working with the unassigned OTU data. After taxonomic assignment of the OTU data, diversity and richness were no longer correlated. The ecological assessment derived from morphological bulk samples was conserved by the biofilms samples. We also showed that the biofilm method allows to detect a higher diversity for some organisms (Cnidaria), that is hardly accessible with the morphological method. The results of this study exploring the DNA signal captured by natural biofilms are encouraging. However, a more detailed study integrating more replicates and comparing the biodiversity signal based on both morphological and molecular bulk macroinvertebrate samples to the one captured by biofilms will be necessary. Better understanding how the DNA signal captured by natural biofilms represents the biodiversity of a given sampling site is necessary before considering its use for bioassessment applications.


Subject(s)
Invertebrates , Rivers , Animals , Biodiversity , Biofilms , Comoros , DNA , DNA, Environmental , Ecosystem , Environmental Monitoring , France , Invertebrates/genetics
SELECTION OF CITATIONS
SEARCH DETAIL