Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 918: 170651, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38320710

ABSTRACT

Microplastic pollution is an increasing threat to coral reefs, which are already strongly challenged by climate change-related heat stress. Although it is known that scleractinian corals can ingest microplastic, little is known about their egestion and how microplastic exposure may impair corals at physiological and cellular levels. In addition, the effects of microplastic pollution at current environmental concentration have been little investigated to date, particularly in corals already impacted by heat stress. In this study, the combined effects of these environmental threats on Pocillopora damicornis were investigated from a physical and cellular perspective. Colonies were exposed to three concentrations of polyethylene microplastic beads (no microplastic beads: [No MP], 1 mg/L: [Low MP]; 10 mg/L: [High MP]), and two different temperatures (25 °C and 30 °C) for 72 h. No visual signs of stress in corals, such as abnormal mucus production and polyp extroflection, were recorded. At [Low MP], beads adhered to colonies were ingested but were also egested. Moreover, thermally stressed colonies showed a lower adhesion and higher egestion of microplastic beads. Coral bleaching was observed with an increase in temperature and microplastic bead concentration, as indicated by a general decrease in chlorophyll concentration and Symbiodiniaceae density. An increase in lipid peroxidation was measured in colonies exposed to [Low MP] and [High MP] and an up-regulation of stress response gene hsp70 was observed due to the synergistic interaction of both stressors. Overall, our findings showed that heat stress still represents the main threat to P. damicornis, while the effect of microplastics on coral health and physiology may be minor, especially at control temperature. However, microplastics could exacerbate the effect of thermal stress on cellular homeostasis, even at [Low MP]. While reducing ocean warming is critical for preserving coral reefs, effective management of emerging threats like microplastic pollution is equally essential.


Subject(s)
Anthozoa , Microplastics , Animals , Microplastics/toxicity , Plastics/toxicity , Anthozoa/physiology , Coral Reefs , Heat-Shock Response
2.
Cladistics ; 40(2): 107-134, 2024 04.
Article in English | MEDLINE | ID: mdl-38112464

ABSTRACT

Capitate hydrozoans are a morphologically and ecologically diverse hydrozoan suborder, currently including about 200 species. Being grouped in two clades, Corynida and Zancleida, these hydrozoans still show a number of taxonomic uncertainties at the species, genus and family levels. Many Capitata species established symbiotic relationships with other benthic organisms, including bryozoans, other cnidarians, molluscs and poriferans, as well as with planktonic dinoflagellates for mixotrophic relationships and with bacteria for thiotrophic ectosymbioses. Our study aimed at providing an updated and comprehensive phylogeny reconstruction of the suborder, at modelling the evolution of selected morphological and ecological characters, and at testing evolutionary relationships between the symbiotic lifestyle and the other characters, by integrating taxonomic, ecological and evolutionary data. The phylogenetic hypotheses here presented shed light on the evolutionary relationships within Capitata, with most families and genera being recovered as monophyletic. The genus Zanclea and family Zancleidae, however, were divided into four divergent clades, requiring the establishment of the new genus Apatizanclea and the new combinations for species in Zanclea and Halocoryne genera. The ancestral state reconstructions revealed that symbiosis arose multiple times in the evolutionary history of the Capitata, and that homoplasy is a common phenomenon in the group. Correlations were found between the evolution of symbiosis and morphological characters, such as the perisarc. Overall, our results highlighted that the use of genetic data and a complete knowledge of the life cycles are strongly needed to disentangle taxonomic and systematic issues in capitate hydrozoans. Finally, the colonization of tropical habitat appears to have influenced the evolution of a symbiotic lifestyle, playing important roles in the evolution of the group.


Subject(s)
Hydrozoa , Humans , Animals , Phylogeny , Hydrozoa/genetics , Hydrozoa/anatomy & histology , Symbiosis/genetics , Ecosystem
3.
ACS Appl Mater Interfaces ; 15(28): 33916-33931, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37376819

ABSTRACT

Massive coral bleaching episodes induced by thermal stress are one of the first causes of coral death worldwide. Overproduction of reactive oxygen species (ROS) has been identified as one of the potential causes of symbiosis breakdown between polyps and algae in corals during extreme heat wave events. Here, we propose a new strategy for mitigating heat effects by delivering underwater an antioxidant to the corals. We fabricated zein/polyvinylpyrrolidone (PVP)-based biocomposite films laden with the strong and natural antioxidant curcumin as an advanced coral bleaching remediation tool. Biocomposites' mechanical, water contact angle (WCA), swelling, and release properties can be tuned thanks to different supramolecular rearrangements that occur by varying the zein/PVP weight ratio. Following immersion in seawater, the biocomposites became soft hydrogels that did not affect the coral's health in the short (24 h) and long periods (15 days). Laboratory bleaching experiments at 29 and 33 °C showed that coral colonies of Stylophora pistillata coated with the biocomposites had ameliorated conditions in terms of morphological aspects, chlorophyll content, and enzymatic activity compared to untreated colonies and did not bleach. Finally, biochemical oxygen demand (BOD) confirmed the full biodegradability of the biocomposites, showing a low potential environmental impact in the case of open-field application. These insights may pave the way for new frontiers in mitigating extreme coral bleaching events by combining natural antioxidants and biocomposites.


Subject(s)
Anthozoa , Curcumin , Zein , Animals , Anthozoa/metabolism , Curcumin/pharmacology , Antioxidants/pharmacology , Chlorophyll/metabolism , Coral Reefs
4.
Mar Pollut Bull ; 192: 115084, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37257411

ABSTRACT

Tourism is the main income source for the Maldives, but concurrently, it represents a growing threat to its marine ecosystem. Here, we monitored the bioaccumulation of 15 emerging contaminants (ECs) in the Maldivian reef sponges Spheciospongia vagabunda collected in two resort islands (Athuruga and Thudufushi, Ari Atoll) and an inhabited island (Magoodhoo, Faafu Atoll), and we analysed their impact on different sponge cellular stress biomarkers. Caffeine and the insect repellent DEET were detected in sponges of all the islands, whereas the antibiotic erythromycin and the UV filter 4-methylbenzylidene camphor were found in resort islands only. Although concentrations were approximately a few ng/g d.w., we quantified various induced cellular effects, in particular an increase of the levels of the enzyme glutathione S-transferase involved in cell detoxification. Our results highlight the importance to increase awareness on ECs pollution, promoting the use of more environmental friendly products to achieving the sustainable development goals.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem , Bioaccumulation , Tourism
5.
Restor Ecol ; : e13646, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35603134

ABSTRACT

Coral restoration initiatives are gaining significant momentum in a global effort to enhance the recovery of degraded coral reefs. However, the implementation and upkeep of coral nurseries are particularly demanding, so that unforeseen breaks in maintenance operations might jeopardize well-established projects. In the last 2 years, the COVID-19 pandemic has resulted in a temporary yet prolonged abandonment of several coral gardening infrastructures worldwide, including remote localities. Here we provide a first assessment of the potential impacts of monitoring and maintenance breakdown in a suite of coral restoration projects (based on floating rope nurseries) in Colombia, Seychelles, and Maldives. Our study comprises nine nurseries from six locations, hosting a total of 3,554 fragments belonging to three coral genera, that were left unsupervised for a period spanning from 29 to 61 weeks. Floating nursery structures experienced various levels of damage, and total fragment survival spanned from 40 to 95% among projects, with Pocillopora showing the highest survival rate in all locations present. Overall, our study shows that, under certain conditions, abandoned coral nurseries can remain functional for several months without suffering critical failure from biofouling and hydrodynamism. Still, even where gardening infrastructures were only marginally affected, the unavoidable interruptions in data collection have slowed down ongoing project progress, diminishing previous investments and reducing future funding opportunities. These results highlight the need to increase the resilience and self-sufficiency of coral restoration projects, so that the next global lockdown will not further shrink the increasing efforts to prevent coral reefs from disappearing.

6.
Cladistics ; 38(1): 13-37, 2022 02.
Article in English | MEDLINE | ID: mdl-35049086

ABSTRACT

The hydrozoan family Cladocorynidae inhabits tropical to temperate waters and comprises the two genera Pteroclava and Cladocoryne. Pteroclava lives in association with some octocorals and hydrozoans, whereas Cladocoryne is more generalist in terms of substrate choice. This work provides a thorough morpho-molecular reassessment of the Cladocorynidae by presenting the first well-supported phylogeny of the family based on the analyses of three mitochondrial and four nuclear markers. Notably, the two nominal genera were confirmed to be monophyletic and both morphological and genetic data led to the formal description of a new genus exclusively associated with octocorals, Pseudozanclea gen. nov. Maggioni & Montano. Accordingly, the diagnosis of the family was updated. The ancestral state reconstruction of selected characters revealed that the symbiosis with octocorals likely appeared in the most recent common ancestor of Pteroclava and Pseudozanclea. Additionally, the presence of euryteles aggregation in the polyp stage and the exumbrellar nematocyst pouches with euryteles represent synapomorphies of all cladocorynid taxa and probably emerged in their most recent common ancestor. The analysis of several Pteroclava krempfi colonies from Indo-Pacific and Caribbean localities associated with several host octocorals revealed a high intra-specific genetic variability. Single- and multi-locus species delimitations resulted in three to five species hypotheses, but the statistical analysis of morphometric data showed only limited distinction among the clades of P. krempfi. However, P. krempfi clades showed differences in both host specificity, mostly at the octocoral family level, and geographic distribution, with one clade found exclusively in the Caribbean Sea and the others found in the Indo-Pacific.


Subject(s)
Hydrozoa , Animals , Caribbean Region , Host Specificity/genetics , Phylogeny , Symbiosis
7.
DNA Res ; 28(4)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34387305

ABSTRACT

The crown-of-thorns starfish (COTS) is a coral predator that is widely distributed in Indo-Pacific Oceans. A previous phylogenetic study using partial mitochondrial sequences suggested that COTS had diverged into four distinct species, but a nuclear genome-based analysis to confirm this was not conducted. To address this, COTS species nuclear genome sequences were analysed here, sequencing Northern Indian Ocean (NIO) and Red Sea (RS) species genomes for the first time, followed by a comparative analysis with the Pacific Ocean (PO) species. Phylogenetic analysis and ADMIXTURE analysis revealed clear divergences between the three COTS species. Furthermore, within the PO species, the phylogenetic position of the Hawaiian sample was further away from the other Pacific-derived samples than expected based on the mitochondrial data, suggesting that it may be a PO subspecies. The pairwise sequentially Markovian coalescent model showed that the trajectories of the population size diverged by region during the Mid-Pleistocene transition when the sea-level was dramatically decreased, strongly suggesting that the three COTS species experienced allopatric speciation. Analysis of the orthologues indicated that there were remarkable genes with species-specific positive selection in the genomes of the PO and RS species, which suggested that there may be local adaptations in the COTS species.


Subject(s)
Biological Evolution , Genome , Phylogeny , Starfish/genetics , Animals , Genomics , Phylogeography , Sequence Analysis, DNA
8.
Environ Monit Assess ; 190(6): 344, 2018 May 12.
Article in English | MEDLINE | ID: mdl-29754219

ABSTRACT

Outbreaks of the corallivorous crown-of-thorns seastars have received increasing attention due to their negative impacts on coral reefs in the Indo-Pacific Ocean. However, outbreaks in remote and dislocated islands are still poorly understood. This study aims to begin filling informational gaps regarding outbreaks of Acanthaster planci in the remote islands of the central Ari Atoll, Republic of Maldives. The population of A. planci was monitored during three periods over 2 years (2015-2016) to evaluate variations in abundance and to characterise size structure and feeding behaviour. The outbreak appeared to be severe and active throughout the entire study period. The size structure analysis revealed a multimodal distribution dominated by individuals between 20 and 30 cm, suggesting that the outbreak may have resulted from a few nearby mass spawning events. Additionally, the most abundant live coral was Porites, which was also the most consumed genus; however, the electivity index showed a preference for corals of the genera Favites and Pavona. Finally, we also highlighted the need for more geographically extended surveys to better understand local patterns regarding outbreaks of A. planci in the Republic of Maldives.


Subject(s)
Anthozoa/physiology , Food Chain , Life History Traits , Starfish/physiology , Animals , Coral Reefs , Feeding Behavior , Indian Ocean Islands , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...