Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 16(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38201593

ABSTRACT

Thymic epithelial tumors, comprising thymic carcinomas and thymomas, are rare neoplasms. They differ in histology, prognosis, and association with autoimmune diseases such as myasthenia gravis. Thymomas, but not thymic carcinomas, often harbor GTF2I mutations. Mutations of CDKN2A, TP53, and CDKN2B are the most common thymic carcinomas. The acquisition of mutations in genes that control chromatin modifications and epigenetic regulation occurs in the advanced stages of thymic carcinomas. Anti-angiogenic drugs and immune checkpoint inhibitors targeting the PD-1/PD-L1 axis have shown promising results for the treatment of unresectable tumors. Since thymic carcinomas are frankly aggressive tumors, this report presents insights into their oncogenic drivers, categorized under the established hallmarks of cancer.

2.
Cancers (Basel) ; 14(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35681572

ABSTRACT

AIM: to exploit tissue-specific interactions among thymic epithelial tumor (TETs) cells and extra-domain B fibronectin (ED-B FN). MATERIAL AND METHODS: The stromal pattern of ED-B FN expression was investigated through tumor specimen collection and molecular profiling in 11 patients with recurrent TETs enrolled in prospective theragnostic phase I/II trials with Radretumab, an ED-B FN specific recombinant human antibody. Radretumab radioimmunotherapy (R-RIT) was offered to patients who exhibited the target expression. Experiments included immunochemical analysis (ICH), cell cultures, immunophenotypic analysis, Western blot, slot-blot assay, and quantitative RT-PCR of two primary thymoma cultures we obtained from patients' samples and in the Ty82 cell line. RESULTS: The in vivo scintigraphic demonstration of ED-B FN expression resulted in R-RIT eligibility in 8/11 patients, of which seven were treated. The best observed response was disease stabilization (n = 5/7) with a duration of 4.3 months (range 3-5 months). IHC data confirmed high ED-B FN expression in the peripherical microenvironment rather than in the center of the tumor, which was more abundant in B3 thymomas. Further, there was a predominant expression of ED-B FN by the stromal cells of the thymoma microenvironment rather than the epithelial cells. CONCLUSIONS: Our data support the hypothesis that thymomas induce stromal cells to shift FN production to the ED-B subtype, likely representing a favorable hallmark for tumor progression and metastasis. Collectively, results derived from clinical experience and molecular insights of the in vitro experiments suggested that R-RIT inefficacy is unlikely related to low target expression in TET, being the mechanism of R-RIT resistance eventually related to patients' susceptibility (i.e., inherent characteristics), the pattern expression of the target (i.e., at periphery), the biological characteristics of the tumor (i.e., aggressive and resistant phenotypes), and/or to format of the target agent (i.e., 131I-L19-SIP).

3.
Front Cell Dev Biol ; 9: 669381, 2021.
Article in English | MEDLINE | ID: mdl-34291045

ABSTRACT

Mesangiogenic progenitor cells (MPCs) have been isolated from human bone marrow (BM) mononuclear cells. They attracted particular attention for the ability to differentiate into exponentially growing mesenchymal stromal cells while retaining endothelial differentiative potential. MPC power to couple mesengenesis and angiogenesis highlights their tissue regenerative potential and clinical value, with particular reference to musculoskeletal tissues regeneration. BM and adipose tissue represent the most promising adult multipotent cell sources for bone and cartilage repair, although discussion is still open on their respective profitability. Culture determinants, as well as tissues of origin, appeared to strongly affect the regenerative potential of cell preparations, making reliable methods for cell isolation and growth a prerequisite to obtain cell-based medicinal products. Our group had established a definite consistent protocol for MPC culture, and here, we present data showing MPCs to be tissue specific.

4.
Front Cell Dev Biol ; 8: 596452, 2020.
Article in English | MEDLINE | ID: mdl-33364234

ABSTRACT

Hematopoiesis is hosted, supported and regulated by a special bone marrow (BM) microenvironment known as "niche." BM niches have been classified based on micro-anatomic distance from the bone surface into "endosteal" and "central" niches. Whilst different blood vessels have been found in both BM niches in mice, our knowledge of the human BM architecture is much more limited. Here, we have used a combination of markers including NESTIN, CD146, and αSMA labeling different blood vessels in benign human BM. Applying immunohistochemical/immunofluorescence techniques on BM trephines and performing image analysis on almost 300 microphotographs, we detected high NESTIN expression in BM endothelial cells (BMECs) of small arteries (A) and endosteal arterioles (EA), and also in very small vessels we named NESTIN+ capillary-like tubes (NCLTs), not surrounded by sub-endothelial perivascular cells that occasionally reported low levels of NESTIN expression. Statistically, NCLTs were detected within 40 µm from bone trabecula, frequently found in direct contact to the bone line and spatially correlated with hematopoietic stem/progenitor cells. Our results support the expression of NESTIN in human BMECs of EA and A in accordance with the updated classification of murine BM micro-vessels. NCLTs for their peculiar characteristics and micro-anatomical localization have been here proposed as transitional vessels possibly involved in regulating human hematopoiesis.

5.
Oncotarget ; 10(63): 6781-6790, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31827721

ABSTRACT

Multiple myeloma (MM) progresses mainly in the bone marrow where the involvement of a specific microenvironment plays a critical role in maintaining plasma cell growth, spread, and survival. In active disease, the switch from a pre-vascular/non-active phase to a vascular phase is coupled with the impairment of bone turnover. Previously, we have isolated Mesangiogenic Progenitor Cells (MPCs), a bone marrow population that showed mesengenic and angiogenic potential, both in vitro and in vivo. MPC differentiation into musculoskeletal tissue and their ability of sprouting angiogenesis are mutually exclusive, suggesting a role in the imbalancing of the microenvironment in multiple myeloma. MPCs from 32 bone marrow samples of multiple myeloma and 23 non-hematological patients were compared in terms of frequency, phenotype, mesengenic/angiogenic potential, and gene expression profile. Defective osteogenesis was recorded for MM-derived MPCs that showed longer angiogenic sprouting distances respect to non-hematological MPCs, retaining this capability after mesengenic induction. This altered MPCs differentiation potential was not detected in asymptomatic myelomatous disease. These in vitro experiments are suggestive of a forced angiogenic fate in MPCs isolated from MM patients, which also showed increased sprouting activity. Taking together our results suggest a possible role of these cells in the "angiogenic switch" in the MM micro-environment.

6.
Front Oncol ; 8: 555, 2018.
Article in English | MEDLINE | ID: mdl-30574454

ABSTRACT

The Polycomb gene BMI1 expression exerts a negative predictive impact on several hematological malignancies, such as acute and chronic myeloid leukemia (CML), myelofibrosis, and follicular lymphoma. As already demonstrated in CML, BMI1 is responsible for the resistance to the tyrosine kinase inhibitors (TKIs) in a BCR-ABL1-independent way. Even if, it is unknown where BMI1 in CML is expressed (in progenitors or more mature cells). We decided, therefore, to evaluate if and where the BMI1 protein is located, focusing mainly on the CD34+/CD38-/CD26+ CML progenitors. To begin we measured, by flow cytometry, the proportion of CD34+/CD26+ cells in 31 bone marrow samples from 20 CML patients, at diagnosis and during treatment with imatinib. After that the bone marrow blood smears were stained with antibodies anti-CD26, BCR-ABL1, and BMI1. These smears were observed by a confocal laser microscope and a 3D reconstruction was then performed. At diagnosis, CD34+/CD26+ cells median value/µL was 0.48; this number increased from diagnosis to the third month of therapy and then reduced during treatment with imatinib. The number and behavior of the CD26+ progenitors were independent from the BCR-ABL1 expression, but they summed up what previously observed about the BMI1 expression modulation. In this work we demonstrate for the first time that in CML the BMI1 protein is co-expressed with BCR-ABL1 only in the cytoplasm of the CD26+ precursors; on the contrary, in other hematological malignancies where BMI1 is commonly expressed (follicular lymphoma, essential thrombocytemia, acute myeloid leukemia), it was not co-localized with CD26 or, obviously, with BCR-ABL1. Once translated into the clinical context, if BMI1 is a marker of stemness, our results would suggest the combination of the BMI1 inhibitors with TKIs as an interesting object of research, and, probably, as a promising way to overcome resistance in CML patients.

7.
Stem Cell Res Ther ; 8(1): 106, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28464921

ABSTRACT

BACKGROUND: Mesangiogenic progenitor cells (MPCs) have shown the ability to differentiate in-vitro toward mesenchymal stromal cells (MSCs) as well as angiogenic potential. MPCs have so far been described in detail as progenitors of the mesodermal lineage and appear to be of great significance in tissue regeneration and in hemopoietic niche regulation. On the contrary, information regarding the MPC angiogenic process is still incomplete and requires further clarification. In particular, genuine MPC angiogenic potential should be confirmed in-vivo. METHODS: In the present article, markers and functions associated with angiogenic cells have been dissected. MPCs freshly isolated from human bone marrow have been induced to differentiate into exponentially growing MSCs (P2-MSCs). Cells have been characterized and angiogenesis-related gene expression was evaluated before and after mesengenic differentiation. Moreover, angiogenic potential has been tested by in-vitro and in-vivo functional assays. RESULTS: MPCs showed a distinctive gene expression profile, acetylated-low density lipoprotein uptake, and transendothelial migration capacity. However, mature endothelial markers and functions of endothelial cells, including the ability to form new capillaries, were absent, thus suggesting MPCs to be very immature endothelial progenitors. MPCs showed marked 3D spheroid sprouting activating the related molecular machinery, a clear in-vitro indication of early angiogenesis. Indeed, MPCs applied to chicken chorioallantoic membrane induced and participated in neovessel formation. All of these features were lost in mesengenic terminally differentiated P2-MSCs, showing definite separation of the two differentiation lineages. CONCLUSION: Our results confirm the bona-fide angiogenic potential of MPCs and suggest that the high variability reported for MSC cultures, responsible for the controversies regarding MSC angiogenic potential, could be correlated to variable percentages of co-isolated MPCs in the different culture conditions so far used.


Subject(s)
Adult Stem Cells/cytology , Cell Differentiation , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic , Adipocytes/cytology , Adipocytes/metabolism , Adult Stem Cells/metabolism , Cells, Cultured , Female , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mesenchymal Stem Cells/metabolism , Middle Aged
8.
Front Cell Dev Biol ; 4: 114, 2016.
Article in English | MEDLINE | ID: mdl-27800477

ABSTRACT

Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated in vitro under selective culture conditions and shown to retain both mesengenic and angiogenic potential. MPCs also co-isolated with multipotent stromal cells (MSCs) when bone marrow primary cultures were set up for clinical applications, using human serum (HS) in place of fetal bovine serum (FBS). MPC culture purity (over 95%) is strictly dependent on HS supplementation with significant batch-to-batch variability. In the present paper we screened different sources of commercially available pooled human AB type serum (PhABS) for their ability to promote MPC production under selective culture conditions. As the majority of "contaminating" cells in MPC cultures were represented by MSC-like cells, we hypothesized a role by differentiating agents present in the sera. Therefore, we tested a number of growth factors (hGF) and found that higher concentrations of FGF-2, EGF, PDGF-AB, and VEGF-A as well as lower concentration of IGF-1 give sub-optimal MPC recovery. Gene expression analysis of hGF receptors was also carried out both in MSCs and MPCs, suggesting that FGF-2, EGF, and PDGF-AB could act promoting MSC proliferation, while VEGF-A contribute to MSC-like cell contamination, triggering MPC differentiation. Here we demonstrated that managing hGF contents, together with applying specific receptors inhibitors (Erlotinib-HCl and Nintedanib), could significantly mitigate the batch-to-batch variability related to serum supplementation. These data represent a fundamental milestone in view of manufacturing MPC-based medicinal products.

9.
J Vis Exp ; (113)2016 07 15.
Article in English | MEDLINE | ID: mdl-27500428

ABSTRACT

In a research study aimed to isolate human bone marrow (hBM)-derived Mesenchymal Stromal Cells (MSCs) for clinical applications, we identified a novel cell population specifically selected for growth in human serum supplemented medium. These cells are characterized by morphological, phenotypic, and molecular features distinct from MSCs and we named them Mesodermal Progenitor Cells (MPCs). MPCs are round, with a thick highly refringent core region; they show strong, trypsin resistant adherence to plastic. Failure to expand MPCs directly revealed that they are slow in cycling. This is as also suggested by Ki-67 negativity. On the other hand, culturing MPCs in standard medium designed for MSC expansion, gave rise to a population of exponentially growing MSC-like cells. Besides showing mesenchymal differentiation capacity MPCs retained angiogenic potential, confirming their multiple lineage progenitor nature. Here we describe an optimized highly reproducible protocol to isolate and characterize hBM-MPCs by flow cytometry (CD73, CD90, CD31, and CD45), nestin expression, and F-actin organization. Protocols for mesengenic and angiogenic differentiation of MPCs are also provided. Here we also suggest a more appropriate nomenclature for these cells, which has been re-named as "Mesangiogenic Progenitor Cells".


Subject(s)
Bone Marrow , Cell Culture Techniques , Stem Cells/cytology , Bone Marrow Cells/cytology , Cell Differentiation , Humans
10.
Biomed Mater ; 11(4): 045003, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27388559

ABSTRACT

Among the very large number of polymeric materials that have been proposed in the field of orthopedics, polyethylene terephthalate (PET) is one of the most attractive thanks to its flexibility, thermal resistance, mechanical strength and durability. Several studies have been proposed that interface nano- or micro-structured surfaces with mesenchymal stromal cells (MSCs), demonstrating the potential of this technology for promoting osteogenesis. All these studies were carried out on biomaterials other than PET, which remains almost uninvestigated in terms of cell shaping, alignment and differentiation. Here, we study the effect of PET 350-depth nanogratings (NGs) with a ridge and lateral groove size of 500 nm (T1) or 1 µm (T2), on bone marrow-derived human MSC (hMSC) differentiation in relation to the osteogenic fate. We demonstrate that these substrates, especially T2, can promote the osteogenic phenotype more efficiently than standard flat surfaces and that this effect is more marked if cells are cultured in osteogenic medium than in basal medium. Finally, we show that the shape and disposition of calcium hydroxyapatite granules on the different substrates was influenced by the substrate symmetry, being more elongated and spatially organized on NGs than on flat surfaces.


Subject(s)
Bone Marrow Cells/cytology , Cell Differentiation , Mesenchymal Stem Cells/cytology , Nanostructures/chemistry , Osteoblasts/cytology , Osteogenesis/physiology , Polyethylene Terephthalates/metabolism , Bone Marrow Cells/metabolism , Cells, Cultured , Durapatite , Humans , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Polyethylene Terephthalates/chemistry , Tissue Scaffolds
11.
Stem Cells Dev ; 25(9): 661-73, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26975798

ABSTRACT

Mesenchymal stromal cells (MSCs) have been the object of extensive research for decades, due to their intrinsic clinical value. Nonetheless, the unambiguous identification of a unique in vivo MSC progenitor is still lacking, and the hypothesis that these multipotent cells could possibly arise from different in vivo precursors has been gaining consensus in the last years. We identified a novel multipotent cell population in human adult bone marrow that we first named Mesodermal Progenitor Cells (MPCs) for the ability to differentiate toward the mesenchymal lineage, while still retaining angiogenic potential. Despite extensive characterization, MPCs positioning within the differentiation pathway and whether they can be ascribed as possible distinctive progenitor of the MSC lineage is still unclear. In this study, we describe the ex vivo isolation of one novel bone marrow subpopulation (Pop#8) with the ability to generate MPCs. Multicolor flow cytometry in combination with either fluorescence-activated cell sorting or magnetic-activated cell sorting were applied to characterize Pop#8 as CD64(bright)CD31(bright)CD14(neg). We defined Pop#8 properties in culture, including the potential of Pop#8-derived MPCs to differentiate into MSCs. Gene expression data were suggestive of Pop#8 in vivo involvement in hematopoietic stem cell niche constitution/maintenance. Pop#8 resulted over three logs more frequent than other putative MSC progenitors, corroborating the idea that most of the controversies regarding culture-expanded MSCs could be the consequence of different culture conditions that select or promote particular subpopulations of precursors.


Subject(s)
Antigens, CD/metabolism , Bone Marrow Cells/cytology , Cell Separation/methods , Mesoderm/cytology , Neovascularization, Physiologic , Stem Cells/cytology , Adult , Cell Lineage , Cell Shape , Cells, Cultured , Female , Humans , Immunophenotyping , Male , Middle Aged
12.
Front Cell Dev Biol ; 4: 144, 2016.
Article in English | MEDLINE | ID: mdl-28066765

ABSTRACT

Mesangiogenic progenitor cells (MPCs) are a very peculiar population of cells present in the human adult bone marrow, only recently discovered and characterized. Owing to their differentiation potential, MPCs can be considered progenitors for mesenchymal stromal cells (MSCs), and for this reason they potentially represent a promising cell population to apply for skeletal tissue regeneration applications. Here, we evaluate the effects of surface nanotopography on MPCs, considering the possibility that this specific physical stimulus alone can trigger MPC differentiation toward the mesenchymal lineage. In particular, we exploit nanogratings to deliver a mechanical, directional stimulus by contact interaction to promote cell morphological polarization and stretching. Following this interaction, we study the MPC-MSC transition by i. analyzing the change in cell morphotype by immunostaining of the key cell-adhesion structures and confocal fluorescence microscopy, and ii. quantifying the expression of cell-phenotype characterizing markers by flow cytometry. We demonstrate that the MPC mesengenic differentiation can be induced by the solely interaction with the NGs, in absence of any other external, chemical stimulus. This aspect is of particular interest in the case of multipotent progenitors as MPCs that, retaining both mesengenic and angiogenic potential, possess a high clinical appeal.

13.
Stem Cells Dev ; 22(12): 1830-8, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23379672

ABSTRACT

Mesenchymal stromal cells (MSCs) are a heterogeneous cell population capable of differentiating toward several cell lines in vitro and, possibly, in vivo. Within cultured MSCs, we identified and purified a precursor cell population [mesodermal progenitor cells (MPCs)] retaining robust proliferation potential and ability to differentiate into endothelial or mesenchymal cells. MPC-derived MSCs retain the ability to further differentiate into osteoblasts, cartilage, or fat cells. Here we further characterized MPCs and MSCs by evaluating expression of integrins and adhesion molecules showing their ability to assemble the molecular machinery involved in endothelium adhesion. MPCs were shown to interact with activated and nonactivated endothelium, whereas MSCs exhibited activation of focal adhesion complexes, higher cell motility, and reduced or absent adhesiveness onto endothelial cells, suggesting a matrix remodeling vocation. We also reported a consistent expression of CXCR4 on the MPC cell surface, suggesting that the different phenotypic behavior could be related to specific functions of the cell in each differentiation stage.


Subject(s)
Bone Marrow Cells/metabolism , Integrins/genetics , Mesenchymal Stem Cells/metabolism , Mesoderm/metabolism , Pseudopodia/metabolism , Stem Cells/metabolism , Aged , Bone Marrow Cells/cytology , Cell Adhesion , Cell Differentiation , Cell Proliferation , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/metabolism , Female , Gene Expression , Gene Expression Profiling , Humans , Integrins/metabolism , Male , Mesenchymal Stem Cells/cytology , Mesoderm/cytology , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Stem Cells/cytology
14.
PLoS One ; 6(9): e25600, 2011.
Article in English | MEDLINE | ID: mdl-21980498

ABSTRACT

BACKGROUND: Mesenchymal Stromal Cells (MSCs) remain poorly characterized because of the absence of manifest physical, phenotypic, and functional properties in cultured cell populations. Despite considerable research on MSCs and their clinical application, the biology of these cells is not fully clarified and data on signalling activation during mesenchymal differentiation and proliferation are controversial. The role of Wnt pathways is still debated, partly due to culture heterogeneity and methodological inconsistencies. Recently, we described a new bone marrow cell population isolated from MSC cultures that we named Mesodermal Progenitor Cells (MPCs) for their mesenchymal and endothelial differentiation potential. An optimized culture method allowed the isolation from human adult bone marrow of a highly pure population of MPCs (more than 97%), that showed the distinctive SSEA-4+CD105+CD90(neg) phenotype and not expressing MSCA-1 antigen. Under these selective culture conditions the percentage of MSCs (SSEA-4(neg)CD105+CD90(bright) and MSCA-1+), in the primary cultures, resulted lower than 2%. METHODOLOGY/PRINCIPAL FINDING: We demonstrate that MPCs differentiate to MSCs through an SSEA-4+CD105+CD90(bright) early intermediate precursor. Differentiation paralleled the activation of Wnt5/Calmodulin signalling by autocrine/paracrine intense secretion of Wnt5a and Wnt5b (p<0.05 vs uncondictioned media), which was later silenced in late MSCs (SSEA-4(neg)). We found the inhibition of this pathway by calmidazolium chloride specifically blocked mesenchymal induction (ID50 =  0.5 µM, p<0.01), while endothelial differentiation was unaffected. CONCLUSION: The present study describes two different putative progenitors (early and late MSCs) that, together with already described MPCs, could be co-isolated and expanded in different percentages depending on the culture conditions. These results suggest that some modifications to the widely accepted MSC nomenclature are required.


Subject(s)
Calmodulin/metabolism , Cell Differentiation , Mesenchymal Stem Cells/cytology , Mesoderm/cytology , Proto-Oncogene Proteins/metabolism , Signal Transduction , Stem Cells/cytology , Wnt Proteins/metabolism , Adult , Aged , Cell Differentiation/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression Regulation/drug effects , Humans , Imidazoles/pharmacology , Male , Proto-Oncogene Proteins/genetics , Signal Transduction/drug effects , Stage-Specific Embryonic Antigens/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Wnt Proteins/genetics , Wnt-5a Protein
15.
J Med Chem ; 53(21): 7532-48, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-20939501

ABSTRACT

In the search for potent ligands at the benzodiazepine site on the GABA(A) receptor, new fluoro derivatives of the pyrazolo[5,1-c][1,2,4]benzotriazine system were synthesized to evaluate the importance of the introduction of a fluorine atom in this system. Biological and pharmacological studies indicate that the substitution at position 8 with a trifluoromethyl group confers pharmacological activity due to potential metabolic stability in comparison to inactive 8-methyl substituted analogues. In particular, the compound 3-(2-methoxybenzyloxycarbonyl)-8-trifluoromethylpyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide (21) emerges because of its selective anxiolytic profile without side effects. An analysis of all the newly synthesized compounds in our pharmacophoric map confirms the essential interaction points for binding recognition and the important areas for affinity modulation. The fluorine atom was able to form a hydrogen bond interaction only when it is not in position 3.


Subject(s)
Anti-Anxiety Agents/chemical synthesis , Models, Molecular , Pyrazoles/chemical synthesis , Receptors, GABA-A/metabolism , Triazines/chemical synthesis , Animals , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Binding Sites , Cattle , Cerebral Cortex/metabolism , Crystallography, X-Ray , Drug Design , Drug Inverse Agonism , In Vitro Techniques , Male , Mice , Molecular Structure , Pyrazoles/chemistry , Pyrazoles/pharmacology , Radioligand Assay , Rats , Rats, Wistar , Structure-Activity Relationship , Triazines/chemistry , Triazines/pharmacology
16.
PLoS One ; 5(3): e9861, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20360837

ABSTRACT

BACKGROUND: We recently characterized a progenitor of mesodermal lineage (MPCs) from the human bone marrow of adults or umbilical cord blood. These cells are progenitors able to differentiate toward mesenchymal, endothelial and cardiomyogenic lineages. Here we present an extensive molecular characterization of MPCs, from bone marrow samples, including 39 genes involved in stem cell machinery, differentiation and cell cycle regulation. METHODOLOGY/PRINCIPAL FINDINGS: MPCs are cytofluorimetrically characterized and quantitative RT-PCR was performed to evaluate the gene expression profile, comparing it with MSCs and hESCs lines. Immunofluorescence and dot-blot analysis confirm qRT-PCR data. MPCs exhibit an increased expression of OCT4, NANOG, SALL4, FBX15, SPP1 and to a lesser extent c-MYC and KLF4, but lack LIN28 and SOX2. MPCs highly express SOX15. CONCLUSIONS/SIGNIFICANCE: MPCs express many pluripotency-associated genes and show a peculiar Oct-4 molecular circuit. Understanding this unique molecular mechanism could lead to identifying MPCs as feasible, long telomeres, target cells for reprogramming with no up-regulation of the p53 pathway. Furthermore MPCs are easily and inexpensively harvested from human bone marrow.


Subject(s)
Gene Expression Regulation , Mesoderm/cytology , Pluripotent Stem Cells/cytology , Stem Cells/cytology , Aged , Bone Marrow Cells/cytology , Cell Lineage , Embryonic Stem Cells/cytology , Female , Fetal Blood/cytology , Flow Cytometry/methods , Humans , Kruppel-Like Factor 4 , Male , Microscopy, Fluorescence/methods , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/metabolism
17.
J Med Chem ; 52(15): 4668-82, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19591485

ABSTRACT

A new series of pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide 8-alkyloxy-/aryloxy-/arylalkyloxy and 8-aryl-/arylalkylderivatives variously substituted at the 3-position were synthesized and binding studies at the benzodiazepine site on GABA(A) receptor were carried out. The pharmacological profile was identified for compounds 10, 11, 16(+), 16(-), and 17 by considering six potential benzodiazepine actions: motor coordination, anticonvulsant action, spontaneous motility and explorative activity, potential anxiolytic-like effects, mouse learning and memory modulation, and finally, ethanol-potentiating action. Compound 17 stands out as the compound that improves mouse memory processes selectively, safely, and in a statistically significant manner. From a ligand-based pharmacophoric model, we identified a hydrogen bond interaction area HBp-3 near the lipophilic area. This new pharmacophoric model allowed us to identify four structural compound typologies and thus to rationalize the affinity data of all compounds.


Subject(s)
Drug Inverse Agonism , GABA-A Receptor Agonists , Triazines/chemical synthesis , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/pharmacology , Anticonvulsants/chemical synthesis , Anticonvulsants/pharmacology , Cattle , Hydrogen Bonding , Male , Mice , Models, Molecular , Motor Activity , Rats , Rats, Wistar , Receptors, GABA-A/metabolism , Structure-Activity Relationship , Triazines/chemistry , Triazines/pharmacology
18.
J Med Chem ; 52(12): 3723-34, 2009 Jun 25.
Article in English | MEDLINE | ID: mdl-19469479

ABSTRACT

Anxioselective agents may be identified among compounds binding selectively to the alpha(2)beta(x)gamma(2) subtype of the gamma-aminobutyric acid-A (GABA(A))/central benzodiazepine receptor (BzR) complex and behaving as agonists or among compounds binding with comparable potency to various BzR subtypes but eliciting agonism only at the alpha(2)beta(x)gamma(2) receptor. Because of subtle steric differences among BzR subtypes, the latter approach has proved much more successful. A biological screening within the class of indol-3-ylglyoxylamides 1-3 allowed us to identify compounds 1c and 2b as potential anxiolytic/nonsedative agents showing alpha(2) selective efficacy in vitro and anxioselective effects in vivo. According to molecular modeling studies, and consistently with SARs accumulated in the past decade, 5-NO(2)- and 5-H-indole derivatives would preferentially bind to BzR by placing the indole ring in the L(Di) and the L(2) receptor binding sites, respectively.


Subject(s)
Anti-Anxiety Agents/pharmacology , GABA-A Receptor Agonists , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Binding Sites , Computer Simulation , Models, Chemical , Models, Molecular , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
19.
Stem Cells Dev ; 18(8): 1227-34, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19331526

ABSTRACT

We have recently identified mesodermal progenitor cells (MPCs) isolated from adult human bone marrow. These cells show unusual phenotypes, having putative embryonic markers and aldehyde dehydrogenase (ALDH) activity. Interestingly, these resting cells, which have been selected by culturing them in the presence of adult human serum, can easily be induced to differentiate into mature mesenchymal stromal cells (MSCs) after substituting the adult human serum for fetal bovine serum (FBS) or human cord serum. MPC-derived MSCs are, in turn, able to differentiate toward osteoblasts, chondrocytes, and adipocytes. Furthermore, MPCs are able to differentiate into endothelial cells. MPCs have been proven to be strongly adherent to plastic culture bottles and to be trypsin-resistant. In the present article, we show a simple and inexpensive method to isolate highly selected mesodermal progenitors from bone marrow or cord blood. The optimization of standard culture conditions (using commercial human AB sera and appropriate concentrations for cell seeding in plastics) allows a pure population of MPCs to be obtained even after a short culture period. We believe that this simple, repeatable, and standardized method will facilitate studies on MPCs.


Subject(s)
Cell Culture Techniques/methods , Mesoderm/cytology , Mesoderm/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Biomarkers/metabolism , Cell Differentiation , Cell Separation , Cells, Cultured , Culture Media, Conditioned , Gene Expression Regulation , Humans
20.
Stem Cells Dev ; 18(6): 857-66, 2009.
Article in English | MEDLINE | ID: mdl-18991503

ABSTRACT

Bone marrow-derived mesodermal stem cells may differentiate toward several lines and are easily cultured in vitro. Some putative progenitors of these cells have been described in both humans and mice. Here, we describe a new mesodermal progenitor population [mesodermal progenitors cells (MPCs)] able to differentiate into mesenchymal cells upon appropriate culture conditions. When cultured in presence of autologous serum, these cells are strongly adherent to plastic, resistant to trypsin detachment, and resting. Mesodermal progenitor cells may be pulsed to proliferate and differentiate by substituting autologous serum for human cord blood serum or fetal calf serum. By these methods cells proliferate and differentiate toward mesenchymal cells and thus may further differentiate into osteoblats, chondrocytes, or adipocytes. Moreover MPCs are capable to differentiate in endothelial cells (ECs) showing characteristics similar to microvessel endothelium cells. Mesodermal progenitors cells have a defined phenotype and carry embryonic markers not present in mesenchymal cells. Moreover MPCs strongly express aldehyde dehydrogenase activity, usually present in hematopoietic precursors but absent in mesenchymal cells. When these progenitors are pulsed to differentiate, they lose these markers and acquire the mesenchymal ones. Interestingly, mesenchymal cells may not be induced to back differentiate into MPCs. Our results demonstrate the adult serum role in maintaining pluripotent mesodermal precursors and allow isolation of these cells. After purification, MPCs may be pulsed to proliferate in a very large scale and then induced to differentiate, thus possibly allowing their use in regenerative medicine.


Subject(s)
Bone Marrow Cells/cytology , Mesoderm/cytology , Stem Cells/cytology , Adult , Biomarkers/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/ultrastructure , Cell Proliferation/drug effects , Cell Separation , Cell Shape/drug effects , Cells, Cultured , Colony-Forming Units Assay , Fluorescent Antibody Technique , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/ultrastructure , Mesoderm/drug effects , Mesoderm/ultrastructure , Neovascularization, Physiologic/drug effects , Stem Cells/drug effects , Stem Cells/ultrastructure , Vascular Endothelial Growth Factor A/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...