Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 50(9): 5817-5827, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37493525

ABSTRACT

BACKGROUND: The beam energy is one of the most significant parameters in particle therapy since it is directly correlated to the particles' penetration depth inside the patient. Nowadays, the range accuracy is guaranteed by offline routine quality control checks mainly performed with water phantoms, 2D detectors with PMMA wedges, or multi-layer ionization chambers. The latter feature low sensitivity, slow collection time, and response dependent on external parameters, which represent limiting factors for the quality controls of beams delivered with fast energy switching modalities, as foreseen in future treatments. In this context, a device based on solid-state detectors technology, able to perform a direct and absolute beam energy measurement, is proposed as a viable alternative for quality assurance measurements and beam commissioning, paving the way for online range monitoring and treatment verification. PURPOSE: This work follows the proof of concept of an energy monitoring system for clinical proton beams, based on Ultra Fast Silicon Detectors (featuring tenths of ps time resolution in 50 µm active thickness, and single particle detection capability) and time-of-flight techniques. An upgrade of such a system is presented here, together with the description of a dedicated self-calibration method, proving that this second prototype is able to assess the mean particles energy of a monoenergetic beam without any constraint on the beam temporal structure, neither any a priori knowledge of the beam energy for the calibration of the system. METHODS: A new detector geometry, consisting of sensors segmented in strips, has been designed and implemented in order to enhance the statistics of coincident protons, thus improving the accuracy of the measured time differences. The prototype was tested on the cyclotron proton beam of the Trento Protontherapy Center (TPC). In addition, a dedicated self-calibration method, exploiting the measurement of monoenergetic beams crossing the two telescope sensors for different flight distances, was introduced to remove the systematic uncertainties independently from any external reference. RESULTS: The novel calibration strategy was applied to the experimental data collected at TPC (Trento) and CNAO (Pavia). Deviations between measured and reference beam energies in the order of a few hundreds of keV with a maximum uncertainty of 0.5 MeV were found, in compliance with the clinically required water range accuracy of 1 mm. CONCLUSIONS: The presented version of the telescope system, minimally perturbative of the beam, relies on a few seconds of acquisition time to achieve the required clinical accuracy and therefore represents a feasible solution for beam commission, quality assurance checks, and online beam energy monitoring.


Subject(s)
Proton Therapy , Calibration , Proton Therapy/standards , Time Factors , Humans
2.
Sci Total Environ ; 772: 145044, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33581519

ABSTRACT

Risk assessment is considered an essential tool to assist in the management and mitigation of polluted areas, especially those associated with economic activities that significantly degrade the environment, such as mining. However, most of the methodologies of risk assessment adopt the deterministic approach of using a fixed value for ascertaining the hazards derived from exposure to chemical pollutants. However, this is not the case of the Human, Ecological and Radiological Risk (HERisk) code, which allows space-time assessments of ecological, radiological, and human health risks. Indeed, this work aims to describe this new software (enhanced version of HHRISK), which not only improves the performance of the code but also increases its applicability and versatility. To showcase its usefulness in evaluating ecological pollution and human health risk were studied the contents of potentially toxic elements (Co, Cu, Fe, Mn, Ni, Pb, and Zn) in soils and surface waters from the nickel mining area in the municipality of Itagibá (Bahia, Brazil). The obtained results showed that metals are non-homogeneous distributed, suggesting the presence of local enrichment sources, mainly related to human activities. The statistical analyses carried out revealed that mining and agricultural activities are possibly responsible for the contents of these pollutants in both soils and surface waters. The calculated ecological indices of pollution confirmed anthropogenic pollution around the mining area, especially in the locations closest to sterile waste piles. The results of the human health risk assessment revealed that the ingestion of meat and contaminated water are the main routes for entering the potentially toxic elements to the human body and that Co is the chemical specie that poses the highest risk in the entire region. The hazard index (HI) values indicated that the whole area around the mine should be considered as a high risk for human health.


Subject(s)
Metals, Heavy , Soil Pollutants , Brazil , China , Cities , Environmental Monitoring , Humans , Metals, Heavy/analysis , Risk Assessment , Software , Soil , Soil Pollutants/analysis
3.
J Environ Manage ; 273: 111148, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32758915

ABSTRACT

Mining, although relevant and indispensable for human socioeconomic development, is considered one of the most polluting anthropogenic activities. Water resources are the most vulnerable environmental compartment to the direct impacts of mining, especially in the semi-arid regions. In these regions, mining activity constitutes an important challenge in the management of water resources; since its impacts can be maximized by the adverse meteorological conditions. This study aimed to assess the level of contamination in water resources of three important mining areas in a semi-arid region, where approximately 70,000 people live. The concentrations of eleven heavy metals in sediment, surface and groundwater samples were determined by ICP OES. The results obtained for water samples indicated significant contamination by Cd, Pb, and U, based on the limits established by Brazilian and international regulatory legislation. In the case of sediment samples, higher concentrations of Cr, Cu, Ni, and V were observed. Pollution indices (PLI, CF and Igeo) revealed moderate to extreme contamination mainly along the Jacaré and Contas rivers. The Pearson correlation, Principal Component, and Hierarchical Cluster analyses were performed to identify patterns in the distribution of elements and common sources of pollution. The results suggested that the concentrations of Co, Cr, Cu, Fe, Mn, Ni, and V were mainly related to mining activities and, to a lesser extent, natural sources. In the case of Cd and Pb, contamination may have an important contribution from fertilizers use, whereas Zn has a mixed source of both lithogenic and anthropogenic origin. On the other hand, the high concentrations of U, specifically in groundwater samples, were associated with geogenic causes. Although the potential ecological risk values indicated a low ecological risk; other sediment quality indices (TEL, PEL, ΣTU, and PEL-Q) revealed that there is 25% of the probability that the content of heavy metals in water resources near the mining areas induces adverse toxic effects on aquatic organisms.


Subject(s)
Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Brazil , China , Environmental Monitoring , Geologic Sediments , Humans , Risk Assessment , Water Resources
4.
Appl Radiat Isot ; 130: 34-42, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28942326

ABSTRACT

A combination of experimental measurements and Monte Carlo (MC) calculations was used to determine the full-energy peak efficiency of a HPGe detector employed in environmental measurements. The manufacturer-provided parameters of the detector were corrected by comparing measured values of the efficiency with those obtained by MC simulations. After the adjustment of the active volume of the detector, the simulated and experimentally measured efficiencies agreed within 1%. A full-energy peak efficiency curve for a new distance was obtained by simulation. The efficiency curve for volumetric samples in the 53-1408keV energy range was determined using the efficiency transfer method. Geometric and self-absorption correction factors were estimated by experimental measurements, MC calculations or a combination of the two. In addition, the density of two sediment samples was estimated by a transmission measurement experiment and data simulation. Finally, concentrations of 238U and 232Th in two sediment samples from the Caetité region of Brazil were determined with relative uncertainties of about 5%.

SELECTION OF CITATIONS
SEARCH DETAIL
...