Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37609178

ABSTRACT

How ubiquitous circadian clocks orchestrate tissue-specific outputs is not well understood. Pancreatic ß cell-autonomous clocks attune insulin secretion to daily energy cycles, and desynchrony from genetic or behavioral disruptions raises type 2 diabetes risk. We show that the transcription factor DEC1, a clock component induced in adult ß cells, coordinates their glucose responsiveness by synchronizing energy metabolism and secretory gene oscillations. Dec1-ablated mice develop lifelong hypo-insulinemic diabetes, despite normal islet formation and intact circadian Clock and Bmal1 activators. DEC1, but not CLOCK/BMAL1, binds maturity-linked genes that mediate respiratory metabolism and insulin exocytosis, and Dec1 loss disrupts their transcription synchrony. Accordingly, ß-cell Dec1 ablation causes hypo-insulinemia due to immature glucose responsiveness, dampening insulin rhythms. Thus, Dec1 links circadian clockwork to the ß-cell maturation process, aligning metabolism to diurnal energy cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...