Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(25): eadj3268, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896607

ABSTRACT

Chloroplasts are the powerhouse of the plant cell, and their activity must be matched to plant growth to avoid photooxidative damage. We have identified a posttranslational mechanism linking the eukaryotic target of rapamycin (TOR) kinase that promotes growth and the guanosine tetraphosphate (ppGpp) signaling pathway of prokaryotic origins that regulates chloroplast activity and photosynthesis in particular. We find that RelA SpoT homolog 3 (RSH3), a nuclear-encoded enzyme responsible for ppGpp biosynthesis, interacts directly with the TOR complex via a plant-specific amino-terminal region which is phosphorylated in a TOR-dependent manner. Down-regulating TOR activity causes a rapid increase in ppGpp synthesis in RSH3 overexpressors and reduces photosynthetic capacity in an RSH-dependent manner in wild-type plants. The TOR-RSH3 signaling axis therefore regulates the equilibrium between chloroplast activity and plant growth, setting a precedent for the regulation of organellar function by TOR.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chloroplasts , Photosynthesis , Signal Transduction , Chloroplasts/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Phosphorylation , Protein Processing, Post-Translational , Gene Expression Regulation, Plant , Guanosine Tetraphosphate/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinases
2.
Plant J ; 117(5): 1344-1355, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38011587

ABSTRACT

Kinases are major components of cellular signaling pathways, regulating key cellular activities through phosphorylation. Kinase inhibitors are efficient tools for studying kinase targets and functions, however assessing their kinase specificity in vivo is essential. The identification of resistant kinase mutants has been proposed to be the most convincing approach to achieve this goal. Here, we address this issue in plants via a pharmacogenetic screen for mutants resistant to the ATP-competitive TOR inhibitor AZD-8055. The eukaryotic TOR (Target of Rapamycin) kinase is emerging as a major hub controlling growth responses in plants largely thanks to the use of ATP-competitive inhibitors. We identified a dominant mutation in the DFG motif of the Arabidopsis TOR kinase domain that leads to very strong resistance to AZD-8055. This resistance was characterized by measuring root growth, photosystem II (PSII) activity in leaves and phosphorylation of YAK1 (Yet Another Kinase 1) and RPS6 (Ribosomal protein S6), a direct and an indirect target of TOR respectively. Using other ATP-competitive TOR inhibitors, we also show that the dominant mutation is particularly efficient for resistance to drugs structurally related to AZD-8055. Altogether, this proof-of-concept study demonstrates that a pharmacogenetic screen in Arabidopsis can be used to successfully identify the target of a kinase inhibitor in vivo and therefore to demonstrate inhibitor specificity. Thanks to the conservation of kinase families in eukaryotes, and the possibility of creating amino acid substitutions by genome editing, this work has great potential for extending studies on the evolution of signaling pathways in eukaryotes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Sirolimus/pharmacology , Signal Transduction/physiology , Phosphorylation , Mutation , Adenosine Triphosphate/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
3.
Biochimie ; 169: 12-17, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31265860

ABSTRACT

Microalgae can produce large quantities of triacylglycerols (TAGs) and other neutral lipids that are suitable for making biofuels and as feedstocks for green chemistry. However, TAGs accumulate under stress conditions that also stop growth, leading to a trade-off between biomass production and TAG yield. Recently, in the model marine diatom Phaeodactylum tricornutum it was shown that inhibition of the target of rapamycin (TOR) kinase boosts lipid productivity by promoting TAG production without stopping growth. We believe that basic knowledge in this emerging field is required to develop innovative strategies to improve neutral lipid accumulation in oleaginous microalgae. In this minireview, we discuss current research on the TOR signaling pathway with a focus on its control on lipid homeostasis. We first provide an overview of the well characterized roles of TOR in mammalian lipogenesis, adipogenesis and lipolysis. We then present evidence of a role for TOR in controlling TAG accumulation in microalgae, and draw parallels between the situation in animals, plants and microalgae to propose a model of TOR signaling for TAG accumulation in microalgae.


Subject(s)
Algal Proteins/genetics , Lipid Metabolism/drug effects , Microalgae/drug effects , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/genetics , Triglycerides/biosynthesis , Algal Proteins/antagonists & inhibitors , Algal Proteins/metabolism , Biofuels/supply & distribution , Gene Expression Regulation , Homeostasis/drug effects , Homeostasis/genetics , Lipid Metabolism/genetics , Microalgae/enzymology , Microalgae/genetics , Microalgae/growth & development , Morpholines/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
4.
J Exp Bot ; 70(8): 2297-2312, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30773593

ABSTRACT

Target of rapamycin (TOR) is a conserved eukaryotic phosphatidylinositol 3-kinase-related kinase that regulates growth and metabolism in response to environment in plants and algae. The study of the plant and algal TOR pathway has largely depended on TOR inhibitors first developed for non-photosynthetic eukaryotes. In animals and yeast, fundamental work on the TOR pathway has benefited from the allosteric TOR inhibitor rapamycin and more recently from ATP-competitive TOR inhibitors (asTORis) that circumvent the limitations of rapamycin. The asTORis, developed for medical application, inhibit TOR complex 1 (TORC1) more efficiently than rapamycin and also inhibit rapamycin-resistant TORCs. This review presents knowledge on TOR inhibitors from the mammalian field and underlines important considerations for plant and algal biologists. It discusses the use of rapamycin and asTORis in plants and algae and concludes with guidelines for physiological studies and genetic screens with TOR inhibitors.


Subject(s)
TOR Serine-Threonine Kinases/metabolism , Tacrolimus Binding Proteins/metabolism , Animals , Mammals/metabolism , Microalgae/metabolism , Pharmacogenetics , Seaweed/metabolism , Sirolimus/metabolism , Viridiplantae/metabolism
5.
Development ; 146(3)2019 02 07.
Article in English | MEDLINE | ID: mdl-30705074

ABSTRACT

TARGET OF RAPAMYCIN (TOR) is a conserved eukaryotic phosphatidylinositol-3-kinase-related kinase that plays a major role in regulating growth and metabolism in response to environment in plants. We performed a genetic screen for Arabidopsis ethylmethane sulfonate mutants resistant to the ATP-competitive TOR inhibitor AZD-8055 to identify new components of the plant TOR pathway. We found that loss-of-function mutants of the DYRK (dual specificity tyrosine phosphorylation regulated kinase)/YAK1 kinase are resistant to AZD-8055 and, reciprocally, that YAK1 overexpressors are hypersensitive to AZD-8055. Significantly, these phenotypes were conditional on TOR inhibition, positioning YAK1 activity downstream of TOR. We further show that the ATP-competitive DYRK1A inhibitor pINDY phenocopies YAK1 loss of function. Microscopy analysis revealed that YAK1 functions to repress meristem size and induce differentiation. We show that YAK1 represses cyclin expression in the different zones of the root meristem and that YAK1 is essential for TOR-dependent transcriptional regulation of the plant-specific SIAMESE-RELATED (SMR) cyclin-dependent kinase inhibitors in both meristematic and differentiating root cells. Thus, YAK1 is a major regulator of meristem activity and cell differentiation downstream of TOR.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Meristem/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Arabidopsis/genetics , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/physiology , Meristem/genetics , Morpholines/pharmacology , Mutation , Phosphatidylinositol 3-Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects
6.
Int J Mol Sci ; 16(8): 19671-97, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26295391

ABSTRACT

Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.


Subject(s)
Plant Proteins/metabolism , Plant Roots/growth & development , TOR Serine-Threonine Kinases/metabolism , Cell Differentiation , Gene Expression Regulation, Plant , Plant Development , Plant Growth Regulators/metabolism , Signal Transduction
7.
J Gen Virol ; 96(9): 2898-2903, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25979731

ABSTRACT

Potyviruses are important plant pathogens that rely on many plant cellular processes for successful infection. TOR (target of rapamycin) signalling is a key eukaryotic energy-signalling pathway controlling many cellular processes such as translation and autophagy. The dependence of potyviruses on active TOR signalling was examined. Arabidopsis lines downregulated for TOR by RNAi were challenged with the potyviruses watermelon mosaic virus (WMV) and turnip mosaic virus (TuMV). WMV accumulation was found to be severely altered while TuMV accumulation was only slightly delayed. In another approach, using AZD-8055, an active site inhibitor of the TOR kinase, WMV infection was found to be strongly affected. Moreover, AZD-8055 application can cure WMV infection. In contrast, TuMV infection was not affected by AZD-8055. This suggests that potyviruses have different cellular requirements for active plant TOR signalling.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plant Diseases/virology , Potyvirus/physiology , Signal Transduction , Arabidopsis/genetics , Arabidopsis/virology , Arabidopsis Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Plant Diseases/genetics , Potyvirus/classification , Potyvirus/genetics
8.
J Exp Bot ; 64(14): 4361-74, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23963679

ABSTRACT

The TOR (target of rapamycin) protein, a large phosphatidylinositol 3-kinase-like protein kinase (PIKK) that is conserved in eukaryotes and is a central regulator of growth and metabolism. The analysis of function of TOR in plant growth and development has been limited by the fact that plants are very poorly sensitive to rapamycin. As the kinase domain of TOR is highly conserved, this study analysed the dose-dependent effect of three sets of first- and second-generation ATP-competitive inhibitors (called asTORis for active-site TOR inhibitors) recently developed for the human TOR kinase on Arabidopsis thaliana growth. All six asTORis inhibited plant root growth in a dose-dependent manner, with 50% growth inhibitory doses (GI50) of <10 µM and <1 µM for the first- and second-generation inhibitors, respectively, similarly to the values in mammalian cells. A genetic approach further demonstrated that only asTORis inhibited root growth in an AtTOR gene-dosage-dependent manner. AsTORis decreased the length of: (i) the meristematic zone (MZ); (ii) the division zone in the MZ; (iii) epidermal cells in the elongation zone; and (iv) root hair cells. Whereas meristematic cells committed to early differentiation, the pattern of cell differentiation was not affected per se. AsTORis-induced root hair growth phenotype was shown to be specific by using other growth inhibitors blocking the cell cycle or translation. AsTORis dose-dependent inhibition of growth and root hairs was also observed in diverse groups of flowering plants, indicating that asTORis can be used to study the TOR pathway in other angiosperms, including crop plants.


Subject(s)
Adenosine Triphosphate/pharmacology , Arabidopsis/growth & development , Body Patterning/drug effects , Cell Differentiation/drug effects , Meristem/cytology , Plant Development/drug effects , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Arabidopsis/drug effects , Arabidopsis/enzymology , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/metabolism , Cell Proliferation/drug effects , Gene Dosage , Haploinsufficiency/drug effects , Humans , Meristem/drug effects , Meristem/growth & development , Morpholines/pharmacology , Naphthyridines/pharmacology , Phenotype , Phenylurea Compounds/pharmacology , Pyrazoles/pharmacology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
9.
Biochem Soc Trans ; 39(2): 477-81, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21428923

ABSTRACT

The TOR (target of rapamycin) kinase is present in nearly all eukaryotic organisms and regulates a wealth of biological processes collectively contributing to cell growth. The genome of the model plant Arabidopsis contains a single TOR gene and two RAPTOR (regulatory associated protein of TOR)/KOG1 (Kontroller of growth 1) and GßL/LST8 (G-protein ß-subunit-like/lethal with Sec thirteen 8) genes but, in contrast with other organisms, plants appear to be resistant to rapamycin. Disruption of the RAPTOR1 and TOR genes in Arabidopsis results in an early arrest of embryo development. Plants that overexpress the TOR mRNA accumulate more leaf and root biomass, produce more seeds and are more resistant to stress. Conversely, the down-regulation of TOR by constitutive or inducible RNAi (RNA interference) leads to a reduced organ growth, to an early senescence and to severe transcriptomic and metabolic perturbations, including accumulation of sugars and amino acids. It thus seems that plant growth is correlated to the level of TOR expression. We have also investigated the effect of reduced TOR expression on tissue organization and cell division. We suggest that, like in other eukaryotes, the plant TOR kinase could be one of the main contributors to the link between environmental cues and growth processes.


Subject(s)
Plant Development , Plants/metabolism , TOR Serine-Threonine Kinases/physiology , Animals , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Humans , Models, Biological , Phylogeny , Plants/genetics , Signal Transduction/genetics , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism
10.
Plant Physiol ; 151(1): 461-71, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19571309

ABSTRACT

Ribonucleotide reductase (RNR) is an essential enzyme that provides dNTPs for DNA replication and repair. Arabidopsis (Arabidopsis thaliana) encodes three AtRNR2-like catalytic subunit genes (AtTSO2, AtRNR2A, and AtRNR2B). However, it is currently unclear what role, if any, each gene contributes to the DNA damage response, and in particular how each gene is transcriptionally regulated in response to replication blocks and DNA damage. To address this, we investigated transcriptional changes of 17-d-old Arabidopsis plants (which are enriched in S-phase cells over younger seedlings) in response to the replication-blocking agent hydroxyurea (HU) and to the DNA double-strand break inducer bleomycin (BLM). Here we show that AtRNR2A and AtRNR2B are specifically induced by HU but not by BLM. Early AtRNR2A induction is decreased in an atr mutant, and this induction is likely required for the replicative stress checkpoint since rnr2a mutants are hypersensitive to HU, whereas AtRNR2B induction is abolished in the rad9-rad17 double mutant. In contrast, AtTSO2 transcription is only activated in response to double-strand breaks (BLM), and this activation is dependent upon AtE2Fa. Both TSO2 and E2Fa are likely required for the DNA damage response since tso2 and e2fa mutants are hypersensitive to BLM. Interestingly, TSO2 gene expression is increased in atr versus wild type, possibly due to higher ATM expression in atr. On the other hand, a transient ATR-dependent H4 up-regulation was observed in wild type in response to HU and BLM, perhaps linked to a transient S-phase arrest. Our results therefore suggest that individual RNR2-like catalytic subunit genes participate in unique aspects of the cellular response to DNA damage in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , DNA Damage/physiology , Ribonucleotide Reductases/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biological Evolution , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant/physiology , Molecular Sequence Data , Multigene Family , Phenotype , Ribonucleotide Reductases/genetics
11.
PLoS One ; 2(5): e430, 2007 May 09.
Article in English | MEDLINE | ID: mdl-17487278

ABSTRACT

ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of gamma-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/radiation effects , Gamma Rays , Transcription, Genetic/physiology , Arabidopsis/genetics , Arabidopsis/growth & development , Ataxia Telangiectasia Mutated Proteins
12.
Plant J ; 40(3): 439-51, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15469501

ABSTRACT

Various physiological imbalances lead to reactive oxygen species (ROS) overproduction and/or increases in lipoxygenase (LOX) activities, both events ending in lipid peroxidation of polyunsaturated fatty acids (PUFAs). Besides the quantification of such a process, the development of tools is necessary in order to allow the identification of the primary cause of its development and localization. A biochemical method assessing 9 LOX, 13 LOX and ROS-mediated peroxidation of membrane-bound and free PUFAs has been improved. The assay is based on the analysis of hydroxy fatty acids derived from PUFA hydroperoxides by both the straight and chiral phase high-performance liquid chromatography. Besides the upstream products of peroxidation of the 18:2 and 18:3 PUFAs, products coming from the 16:3 were characterized and their steady-state level quantified. Moreover, the observation that the relative amounts of the ROS-mediated peroxidation isomers of 18:3 were constant in leaves allowed us to circumvent the chiral analyses for the discrimination and quantification of 9 LOX, 13 LOX and ROS-mediated processes in routine experiments. The methodology has been successfully applied to decipher lipid peroxidation in Arabidopsis leaves submitted to biotic and abiotic stresses. We provide evidence of the relative timing of enzymatic and non-enzymatic lipid peroxidation processes. The 13 LOX pathway is activated early whatever the nature of the stress, leading to the peroxidation of chloroplast lipids. Under cadmium stress, the 9 LOX pathway added to the 13 LOX one. ROS-mediated peroxidation was mainly driven by light and always appeared as a late process.


Subject(s)
Arabidopsis/metabolism , Lipid Peroxidation , Oxidative Stress , Arabidopsis/drug effects , Cadmium/pharmacology , Carbon Dioxide/metabolism , Environment , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/metabolism , Light , Lipoxygenase/metabolism , Mass Spectrometry , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism , Solanum nigrum/drug effects , Solanum nigrum/metabolism , Nicotiana/drug effects , Nicotiana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...