Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38750272

ABSTRACT

The Orne River, a tributary of the Moselle River, was highly impacted by industrial activities for more than one century. Land use along the Orne River is highly contrasted, with local specificity from its source to its junction with the Moselle River. The intense industrial activity left behind tons of steelmaking wastes (SMW) on the land surface and within the Orne riverbed. To assess the sources of particulate Zn and Pb transported as suspended sediment in the Orne River, different sets of samples from likely Zn- and Pb-bearing particle sources within the Orne watershed were collected. Three sets of samples were taken from potential sources representing detrital, urban, and inherited industrial particles. Mineralogy, element contents, and Zn and Pb isotope compositions were obtained to characterize and reveal the fingerprint of each set of samples. Soil samples were collected on distinct geomorphological areas characterized by different soil types and land uses. They all display detrital minerals assigned to the geological background. Urban dusts and steelmaking residues display specific mineral phases (sulfates and iron oxides, respectively). Element compositions present strong discrepancies between the distinct sets of samples. SMWs are particularly enriched in Fe, Zn, and Pb. Concerning isotopic composition, SMWs exhibit δ66Zn values ranging from - 0.67 to 1.66‰. Urban samples display δ66Zn values between - 0.11 and 0.13‰, and soils present δ66Zn values between - 0.24 and 0.47‰. The 206Pb/204Pb ratio was estimated to range from 17.550 to 18.807 for soils, from 17.973 to 18.219 for urban samples, and from 18.313 to 18.826 for SMWs. For each of the three sets of samples (soils, urban, industrial), variations of geochemical fingerprint were observed. For soils, the relatively large variations of Zn and Pb isotopic compositions were attributed to distinct land use and the contribution of atmospheric deposition. For industrial samples, the variations were more intense and may be attributed either to distinct industrial processes in the production of pig iron or to distinct furnace-flume treatment modes. The three sets of samples (urban, industrial, and detrital) could be distinguished based on Zn and Pb contents and isotopes. Finally, this study not only highlighted the sources that released particulate Zn and Pb into the Orne River system, it also demonstrated that urban particles are well defined in terms of Zn and Pb isotopic signatures, and those isotopic signatures could be extrapolated to other case studies.

2.
Sci Total Environ ; 931: 172849, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38685431

ABSTRACT

Sediment cores from three major French watersheds (Loire, Meuse and Moselle) have been dated by 137Cs and 210Pbxs from 1910 (Loire), 1947 (Meuse) and 1930 (Moselle) until the present in order to reconstruct trajectories of plastic additive contaminants including nine phthalate esters (PAEs) and seven organophosphate esters (OPEs), measured by gas chromatography-mass spectrometer (GC-MS-MS). Historical levels of ∑PAEs were higher than those of ∑OPEs in the Loire and the Moselle sediments, while ∑PAEs and ∑OPEs contents were of the same order of magnitude in the Meuse sediments. Although increases in concentrations do not evolve linearly, our results clearly indicate an increase in OPEs and PAEs concentrations from the 1950-1970 period onwards, compared with the first half of the 20th century. Our results show that, ∑OPE contents increase gradually over time in the Loire and Meuse rivers but evolve more randomly in the Moselle River. Trajectories of ∑PAEs depend on the river and no generality can be established, suggesting sedimentary reworking and/or local contamination. Data from this study allowed comparisons of contents of ∑OPEs and ∑PAEs between rivers, with ∑OPE concentrations in the Moselle River > Meuse River > Loire River, and concentrations of ∑PAEs in the Loire River > Moselle River > Meuse River. Among all PAEs, di(2-ethylhexyl) phthalate (DEHP) was the most abundant in all sediment samples, followed by diisobutyl phthalate (DiBP). Tris (2-chloroisopropyl) phosphate (TCPP) was the most abundant OPE in sediments of the three rivers. In addition, strong positive Pearson correlations were observed between organic matter (OM) parameters and OPE concentrations, and to a lesser extent, between OM parameters and PAE concentrations. This is particularly true for the Moselle River and for the Loire River, but less so for the Meuse River.

3.
Environ Sci Technol ; 57(7): 2768-2778, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36752569

ABSTRACT

Rare earth elements (REEs) are strategic metals strongly involved in low-carbon energy conversion. However, these emerging contaminants are increasingly disseminated into ecosystems, raising concern regarding their toxicity. REE-accumulating plants are crucial subjects to better understand REE transfer to the trophic chain but are also promising phytoremediation tools. In this analysis, we deciphered REE accumulation sites in the REE-accumulating fern Dryopteris erythrosora by synchrotron X-ray µfluorescence (µXRF). This technique allows a high-resolution and in situ analysis of fresh samples or frozen-hydrated cross sections of different organs of the plant. In the sporophyte, REEs were translocated from the roots to the fronds by the xylem sap and were stored within the xylem conductive system. The comparison of REE distribution and accumulation levels in the healthy and necrotic parts of the frond shed light on the differential mobility between light and heavy REEs. Furthermore, the comparison emphasized that necrotized areas were not the main REE-accumulating sites. Finally, the absence of cell-to-cell mobility of REEs in the gametophyte suggested the absence of REE-compatible transporters in photosynthetic tissues. These results provide valuable knowledge on the physiology of REE-accumulating ferns to understand the REE cycle in biological systems and the expansion of phytotechnologies for REE-enriched or REE-contaminated soils.


Subject(s)
Dryopteris , Ferns , Metals, Rare Earth , Humans , Ecosystem , Environmental Pollution/analysis
4.
Environ Sci Technol ; 54(2): 745-757, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31891245

ABSTRACT

The fern Pteris vittata has been the subject of numerous studies because of its extreme arsenic hyperaccumulation characteristics. However, information on the arsenic chemical speciation and distribution across cell types within intact frozen-hydrated Pteris vittata fronds is necessary to better understand the arsenic biotransformation pathways in this unusual fern. While 2D X-ray absorption spectroscopy imaging studies show that different chemical forms of arsenic, As(III) and As(V), occur across the plant organs, depth-resolved information on arsenic distribution and chemical speciation in different cell types within tissues of Pteris vittata have not been reported. By using a combination of planar and confocal µ-X-ray fluorescence imaging and fluorescence computed µ-tomography, we reveal, in this study, the localization of arsenic in the endodermis and pericycle surrounding the vascular bundles in the rachis and the pinnules of the fern. Arsenic is also accumulated in the vascular bundles connecting into each sporangium, and in some mature sori. The use of 2D X-ray absorption near edge structure imaging allows for deciphering arsenic speciation across the tissues, revealing arsenate in the vascular bundles and arsenite in the endodermis and pericycle. This study demonstrates how different advanced synchrotron X-ray microscopy techniques can be complementary in revealing, at tissue and cellular levels, elemental distribution and chemical speciation in hyperaccumulator plants.


Subject(s)
Arsenic , Pteris , Soil Pollutants , Tomography, X-Ray Computed , X-Ray Absorption Spectroscopy
5.
Environ Sci Technol ; 54(4): 2287-2294, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31951400

ABSTRACT

The fern Dicranopteris linearis (Gleicheniaceae) from China is a hyperaccumulator of rare earth element (REE), but little is known about the ecophysiology of REE in this species. This study aimed to clarify tissue-level and organ-level distribution of REEs via synchrotron-based X-ray fluorescence microscopy (XFM). The results show that REEs (La + Ce) are mainly colocalized with Mn in the pinnae and pinnules, with the highest concentrations in necrotic lesions and lower concentrations in veins. In the cross sections of the pinnules, midveins, rachis, and stolons, La + Ce and Mn are enriched in the epidermis, vascular bundles, and pericycle (midvein). In these tissues, Mn is localized mainly in the cortex and mesophyll. We hypothesize that the movement of REEs in the transpiration flow in the veins is initially restricted in the veins by the pericycle between vascular bundle and cortex, while excess REEs are transported by evaporation and cocompartmentalized with Mn in the necrotic lesions and epidermis in an immobile form, possibly a Si-coprecipitate. The results presented here provide insights on how D. linearis regulates high concentrations of REEs in vivo, and this knowledge is useful for developing phytotechnological applications (such as REE agromining) using this fern in REE-contaminated sites in China.


Subject(s)
Cerium , Ferns , Metals, Rare Earth , China , Lanthanum
6.
Environ Sci Pollut Res Int ; 27(33): 41023-41032, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31786765

ABSTRACT

Chlordecone (Kepone) (CLD) is a highly persistent pesticide formerly used in the French West Indies. High levels of this pesticide are still found in soils and represent a subsequent source of contamination for outdoor-reared animals which may ingest involuntary non negligible amounts of soil. In that context, sequestering matrices like activated carbons (ACs) may be used to efficiently decrease the bioavailability of such organic pollutants. The present study intends to assess the respective efficiency of two sequestering strategies where two different ACs were provided either via feed incorporation or via soil amendment. This study involved 20 piglets randomly distributed into 5 experimental groups (4 replicates). All groups were exposed to 10 µg of CLD per kg of BW per day during 10 days via a contaminated soil. In both "Soil-ACs" treatment groups, the contaminated soil was amended by 2% (mass basis) of one of the two ACs. The two "Feed-ACs" groups received the contaminated soil and one dough ball containing 0.5% (mass basis) of one of the ACs. The piglets were then euthanized before collection of pericaudal adipose tissue and the whole liver and CLD analysis. A significant decrease of CLD concentrations in liver and adipose tissue was observed only in the "Soil-ACs" groups in comparison with the control group (P < 0.001). This decrease was particularly important for the coconut shell activated carbon where relative bioavailability was found lower than 1.8% for both tissues.


Subject(s)
Chlordecone , Insecticides , Soil Pollutants , Animals , Biological Availability , Charcoal , Chlordecone/analysis , Insecticides/analysis , Soil , Soil Pollutants/analysis , West Indies
7.
Metallomics ; 11(12): 2052-2065, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31651002

ABSTRACT

Hyperaccumulator plants present the ideal model system for studying the physiological regulation of the essential (and potentially toxic) transition elements nickel and zinc. This study used synchrotron X-ray Fluorescence Microscopy (XFM) elemental imaging and spatially resolved X-ray Absorption Spectroscopy (XAS) to elucidate elemental localization and chemical speciation of nickel and zinc in the hyperaccumulators Noccaea tymphaea and Bornmuellera emarginata (synonym Leptoplax emarginata). The results show that in the leaves of N. tymphaea nickel and zinc have contrasting localization, and whereas nickel is present in vacuoles of epidermal cells, zinc occurs mainly in the mesophyll cells. In the seeds Ni and Zn are similarly localized and strongly enriched in the cotyledons in N. tymphaea. Nickel is strongly enriched in the tip of the radicle of B. emarginata. Noccaea tymphaea has an Fe-rich provascular strand network in the cotyledons of the seed. The chemical speciation of Ni in the seeds of N. tymphaea is unequivocally associated with carboxylic acids, whereas Zn is present as the phytate complex. The spatially resolved spectroscopy did not reveal any spatial variation in chemical speciation of Ni and Zn within the N. tymphaea seed. The dissimilar ecophysiological behaviour of Ni and Zn in N. tymphaea and B. emarginata raises questions about the evolution of hyperaccumulation in these species.


Subject(s)
Brassicaceae/chemistry , Mesophyll Cells/chemistry , Nickel/analysis , Plant Leaves/chemistry , Vacuoles/chemistry , Zinc/analysis , Brassicaceae/classification , Seeds/chemistry , Species Specificity , X-Ray Absorption Spectroscopy
8.
Front Microbiol ; 9: 1443, 2018.
Article in English | MEDLINE | ID: mdl-30013540

ABSTRACT

Aquatic ecosystems are frequently considered as the final receiving environments of anthropogenic pollutants such as pharmaceutical residues or antibiotic resistant bacteria, and as a consequence tend to form reservoirs of antibiotic resistance genes. Considering the global threat posed by the antibiotic resistance, the mechanisms involved in both the formation of such reservoirs and their remobilization are a concern of prime importance. Antibiotic resistance genes are strongly associated with mobile genetic elements that are directly involved in their dissemination. Most mobile genetic element-mediated gene transfers involve replicative mechanisms and, as such, localized gene transfers should participate in the local increase in resistance gene abundance. Additionally, the carriage of conjugative mobile elements encoding cell appendages acting as adhesins has already been demonstrated to increase biofilm-forming capability of bacteria and, therefore, should also contribute to their selective enrichment on surfaces. In the present study, we investigated the occurrence of two families of mobile genetic elements, IncP-1 plasmids and class 1 integrons, in the water column and bank sediments of the Orne River, in France. We show that these mobile elements, especially IncP-1 plasmids, are enriched in the bacteria attached on the suspended matters in the river waters, and that a similar abundance is found in freshly deposited sediments. Using the IncP-1 plasmid pB10 as a model, in vitro experiments demonstrated that local enrichment of plasmid-bearing bacteria on artificial surfaces mainly resulted from an increase in bacterial adhesion properties conferred by the plasmid rather than an improved dissemination frequency of the plasmid between surface-attached bacteria. We propose plasmid-mediated adhesion to particles to be one of the main contributors in the formation of mobile genetic element-reservoirs in sediments, with adhesion to suspended matter working as a selective enrichment process of antibiotic resistant genes and bacteria.

9.
Environ Sci Pollut Res Int ; 24(28): 22717-22729, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28815369

ABSTRACT

In this study, we compared the influence of two different collection methods, filtration (FT) and continuous flow field centrifugation (CFC), on the concentration and the distribution of polycyclic aromatic compounds (PACs) in suspended particulate matter (SPM) occurring in river waters. SPM samples were collected simultaneously with FT and CFC from a river during six sampling campaigns over 2 years, covering different hydrological contexts. SPM samples were analyzed to determine the concentration of PACs including 16 polycyclic aromatic hydrocarbons (PAHs), 11 oxygenated PACs (O-PACs), and 5 nitrogen PACs (N-PACs). Results showed significant differences between the two separation methods. In half of the sampling campaigns, PAC concentrations differed from a factor 2 to 30 comparing FT and CFC-collected SPMs. The PAC distributions were also affected by the separation method. FT-collected SPM were enriched in 2-3 ring PACs whereas CFC-collected SPM had PAC distributions dominated by medium to high molecular weight compounds typical of combustion processes. This could be explained by distinct cut-off threshold of the two separation methods and strongly suggested the retention of colloidal and/or fine matter on glass-fiber filters particularly enriched in low molecular PACs. These differences between FT and CFC were not systematic but rather enhanced by high water flow rates.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , China , Water Movements
10.
Sci Total Environ ; 599-600: 540-553, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28494280

ABSTRACT

Submerged sediment cores were collected upstream of a dam in the Orne River, northeastern France. This dam was built in the context of steelmaking to constitute a water reservoir for blast furnace cooling and wet cleaning of furnace smokes. The dam also enhanced sediment deposition in the upstream zone. This study was performed to unravel the contamination status of sediments and to evidence possible contribution sources. The sediment layers were analyzed for water content, grain size, chemical composition, crystalline phases at a bulk scale and poorly crystalline and amorphous phases at a sub-micrometer scale. Visual aspect, texture, color, and chemical and mineralogical analyses showed that the settled sediments were mainly composed of fine black matter, certainly comprising steelmaking by-products. Those materials were highly enriched with Fe, Zn, Pb and other trace metals, except for a relatively thin layer of surficial sediments that had settled more recently. Bulk mineralogy revealed crystalline iron minerals, such as magnetite, goethite, wuestite and pyrite, in the deep layers of the sediment cores. Furthermore, microscopic investigations evidenced the presence of ferrospheres, goethite nanoparticles and newly formed Fe-aluminosilicates; all originating from the former steelmaking facilities. The variation of iron mineralogy, combined with specific chemical profiles and other sediment features, demonstrate the different contributions that constitute the sediment deposit. Furthermore, chemical and mineralogical features of goethite and Fe-aluminosilicates could be used as a fingerprint for such contaminated sediments.

11.
Environ Pollut ; 199: 139-47, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25645063

ABSTRACT

The geochemical cycles of lanthanides are being disrupted by increasing global production and human use, but their ecotoxicity is not fully characterized. In this study, the sensitivity of Aliivibrio fischeri and Pseudokirchneriella subcapitata to lanthanides increased with atomic number, while Daphnia magna, Heterocypris incongruens, Brachionus calyciflorus and Hydra attenuata were equally sensitive to the tested elements. In some cases, a marked decrease in exposure concentrations was observed over test duration and duly considered in calculating effect concentrations and predicted no effect concentrations (PNEC) for hazard and risk assessment. Comparison of PNEC with measured environmental concentrations indicate that, for the present, environmental risks deriving from lanthanides should be limited to some hotspots (e.g., downstream of wastewater treatment plants). However, considering the increasing environmental concentrations of lanthanides, the associated risks could become higher in the future. Ecotoxicological and risk assessment studies, along with monitoring, are required for properly managing these emerging contaminants.


Subject(s)
Aquatic Organisms/drug effects , Lanthanoid Series Elements/toxicity , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri , Animals , Chlorophyta , Daphnia/drug effects , Ecotoxicology , Risk Assessment
12.
Environ Monit Assess ; 186(7): 4431-42, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24718927

ABSTRACT

This study aimed at relating the variability of Ni biogeochemistry along the ultramafic toposequence to pedogenesis and soil mineralogy. Hypereutric Cambisols dominate upslope; Cambic Vertisols and Fluvic Cambisols occur downslope. The soil mineralogy showed abundance of primary serpentine all over the sequence. It is predominant upslope but secondary smectites dominate in the Vertisols. Free Fe-oxides are abundant in all soils but slightly more abundant in the upslope soils. Whereas serpentines hold Ni in a similar and restricted range in every soil (approx. 0.3 %), Ni contents in smectites may vary a lot and Mg-rich and Al-poor smectites in the Vertisol could hold up to 4.9 % Ni. Ni was probably adsorbed onto amorphous Fe-oxides and was also exchangeable in secondary smectites. High availability of Ni in soils was confirmed by DTPA extractions. However, it varied significantly along the toposequence, being higher in upslope soils, where Ni-bearing amorphous Fe-oxides were abundant and total organic carbon higher and sensibly lower downslope on the Vertisols: NiDTPA varied from 285 mg kg(-1) in the surface of soil I (upslope) to 95.9 mg kg(-1) in the surface of Fluvic Cambisols. Concentration of Ni in Alyssum murale shoots varied from 0.7 % (Hypereutric Cambisols) to 1.4 % (Hypereutric Vertisol). Amazingly, Ni uptake by A. murale was not correlated to NiDTPA, suggesting the existence of specific edaphic conditions that affect the ecophysiology of A. murale upslope.


Subject(s)
Nickel/analysis , Soil Pollutants/analysis , Soil/chemistry , Albania , Brassicaceae/chemistry , Environmental Monitoring , Models, Chemical , Nickel/chemistry , Soil Pollutants/chemistry
13.
Environ Sci Pollut Res Int ; 21(4): 2744-60, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24126933

ABSTRACT

As it flows through a dense steelmaking area, the Fensch River does transport iron-rich particles and colloids, displaying high contents in metallic contaminants (Zn, Cr, Pb, Cu, Ni, and As). Chemical analysis using inductively coupled plasma mass spectrometry (ICP-MS) was carried out on three compartments-waters, suspended materials, and sediments-along the river linear. The variations of metallic trace element concentrations along the river were shown to be partially related to external inputs (industrial and domestic wastewaters and urban surfaces leaching). However, some discrepancies of element partitioning were evidenced. Pb, Cu, and Mn tend to concentrate in suspended particulate and in dissolved fraction, while Cr and As follow the trend of Fe and concentrate within sediments of the most downstream station, just before the junction with Moselle waters. Zn appears strongly associated to iron-rich particles, resulting in a decrease of its concentration in waters for the last station. Along the Fensch linear, the variation of metal partitioning between water and particulate phases is accompanied with strong modifications of the nature and mineralogy of iron-rich particles, as evidenced by microanalyses using electron and X-ray beams. The combination of bulk analyses using ICP-MS and microanalyses applied to the three compartments allowed us to propose a three-step process "settling-weathering-resuspension" to explain Zn partitioning.


Subject(s)
Arsenic/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Arsenic/chemistry , Environmental Monitoring/methods , France , Geologic Sediments/analysis , Metals, Heavy/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Rivers/chemistry , Water Pollutants, Chemical/chemistry
14.
J Colloid Interface Sci ; 407: 76-88, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23866199

ABSTRACT

Al-Fe oxyhydroxy co-precipitates were synthesised by forced hydrolysis of Fe(NO3)3·9H2O and Al(NO3)3·9H2O solutions. Solids containing 0, 1, 10, 25, 50, 75, 90 mol% Al were characterised for composition, texture, mineral structure and local atomic environment. Cation substitution in the hydrous oxides was not observed. The solids consisted of hydrous ferric oxide (HFO) nuclei surrounded by Al-hydroxide. Below 50 mol% Al, unit particle size, high specific surface area and microporosity of HFO were preserved. Al-K-edge XANES showed ordered arrangements of Al-octahedra suggesting that some Al bound specifically to HFO surface sites. Above 50 mol%, Al precipitated in multiple layers around the nuclei and also as individual entities. The HFO nuclei exhibited the general characteristics of a 2-line ferrihydrite. However, as Al increased, the structure was slightly modified. While the symmetry of the FeO6 octahedra improved, the number of Fe-Fe linkages decreased, suggesting less polymerisation. An organisation of the Fe-octahedra, faintly resembling akaganeite, was expressed in Raman spectra. These changes in HFO structure were attributed to hindrance in the progressive olation/oxolation of the primary Fe-hydroxypolymers, caused by Al bound to the surface of nuclei. The presence of nitrate is suspected to have favoured the structural changes.

15.
Sci Total Environ ; 398(1-3): 96-106, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18417190

ABSTRACT

The Fensch River (FR) is one of the most contaminated rivers in France due to the population density and the concentration of industrial activities in this small watershed area. From upstream to downstream, the organic matter extracted from sediments has been analyzed by gas chromatography-mass spectrometry and molecules have been quantified and classified into natural, petrogenic, pyrogenic and sewage water (SW) markers. Upstream the river, anthropogenic molecules are already predominant and represent 87.1% of the molecules quantified. This proportion increases from upstream to downstream and rises to 96.8% at the confluence of the FR with the Moselle River. In the upper part of the FR the contamination is mainly due to human waste (coprostanol: 36.44 microg/g; 42.1% of anthropogenic markers). In the lower part, the contribution of SW markers decreases from 42.1 to 2.4% and the proportion of pyrogenic molecules increases from 29.6 to 59.6%. The major sources of pyrogenic organic matter have been determined by calculation of specific ratios on polycyclic aromatic hydrocarbons and by comparison with reported data. Coal tar, road runoff and atmospheric depositions of urban particles seem to be the major pyrogenic sources. Along the river, the proportion of petrogenic molecules remains constant and those molecules seem to be mainly inherited from road runoff, in the upper part of the FR. Industrial lubricants that occur in steel plant sludge are an additional source in the lower part of the river.


Subject(s)
Geologic Sediments/analysis , Rivers , Water Pollutants, Chemical/analysis , Carbon/analysis , Environmental Monitoring , France , Hydrocarbons/analysis , Sewage
16.
Phytochemistry ; 69(8): 1695-709, 2008 May.
Article in English | MEDLINE | ID: mdl-18371995

ABSTRACT

We have investigated the accumulation of nickel in a hyperaccumulating plant from the Brassicacae family Leptoplax emarginata (Boiss.) O.E. Schulz. Two supplementary hyperaccumulating plants, which have been the subject of a high number of publications, Alyssum murale Waldst. & Kit and Thlaspi caerulescens J.&C. Presl, and a nonaccumulating species Aurinia saxatilis were also studied for reference. The plants were grown during 4 months in specific rhizoboxes with Ni-bearing minerals as a source of nickel. Nickel speciation was analyzed through X-ray absorption spectroscopy at Ni K-edge (X-ray absorption near edge spectroscopy and extended X-ray absorption fine structure spectroscopy) in the different parts of the plants (leaves, stems and roots) and compared with aqueous solutions containing different organo-Ni(II) complexes. Carboxylic acids (citrate, malate) appeared as the main ligands responsible of nickel transfer within those plants. Citrate was found as the predominant ligand for Ni in stems of Leptoplax and Alyssum, whereas in leaves of the three plants, malate appeared as the chelating organic acid of accumulated metal. Histidine could not be detected either in leaves, stems nor roots of any studied plant sample.


Subject(s)
Brassicaceae/chemistry , Chelating Agents/chemistry , Nickel/chemistry , Thlaspi/chemistry , Brassicaceae/metabolism , Chelating Agents/metabolism , Citric Acid/analysis , Citric Acid/chemistry , Glutamic Acid/analysis , Glutamic Acid/chemistry , Ligands , Malates/analysis , Malates/chemistry , Molecular Structure , Nickel/metabolism , Spectrophotometry , Thlaspi/metabolism , X-Rays
17.
Sci Total Environ ; 389(2-3): 503-13, 2008 Jan 25.
Article in English | MEDLINE | ID: mdl-17942142

ABSTRACT

The lipidic fraction from 8 sediments sampled at the confluence between the Fensch River (FR) and the Moselle River (MR) have been analyzed by gas chromatography-mass spectrometry (GC-MS) in order to investigate the transfer of organic micropollutants from the FR to the MR. Molecular markers have been quantified and classified into five categories: natural, petrogenic, pyrogenic and sewage water markers and non-specific molecules. This classification coupled with the quantification of the molecules allows the comparison between anthropogenic and natural inputs and the source apportionment of anthropogenic molecules that are not covalently bound to sedimentary organic macromolecules. The transfer and the fate of organic micropollutants in river sediments seem to be controlled by the water flow. Low water flow conditions induce the settling of fine particles, which could limit the biodegradation. This leads to the preservation of the original anthropogenic fingerprint that is rich in low molecular weight molecules. In high water flow conditions, sediments are mainly composed of coarse particles, limiting the preservation of organic matter, which leads to a persistent anthropogenic fingerprint, mainly composed of high molecular weight compounds.


Subject(s)
Geologic Sediments/analysis , Organic Chemicals/analysis , Rivers/chemistry , Water Movements , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , France , Organic Chemicals/chemistry , Sewage/analysis , Sewage/chemistry
18.
Sci Total Environ ; 372(1): 183-92, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17079000

ABSTRACT

The Fensch River is a tributary of the Moselle River. It is a highly contaminated river that drains an industrial area. The objective of this preliminary study is to determine its impact on the Moselle River by analysing the extractable organic matter (EOM) coming from the sediments at the molecular scale. EOM is described in term of aromatic hydrocarbons, aliphatic hydrocarbons and polar compounds. EOM coming from Fensch River sediments is mainly composed of anthropogenic molecules. Aromatic hydrocarbons are dominated by parent Polycyclic Aromatic Hydrocarbons (PAHs) underlining the pyrogenic origin of this fraction. Aliphatic hydrocarbons consist of diagenetic hopanes and a broad UCM that are characteristics of thermal mature organic matter. Upstream the confluence the EOM of the Moselle River is mainly from vegetal origin. It is composed of high molecular weight n-alkanes with an odd over even predominance, degredation products of phytol and stigmasterol. The occurrence of PAHs and diagenetic hopanes underlines that the Moselle River is already contaminated before the confluence. The Fensch River input drastically changes the EOM of the Moselle River. Amount of PAHs is doubled and the fingerprints of both aliphatic hydrocarbons and polar compounds highlight the combination of both natural and anthropogenic sources.


Subject(s)
Geologic Sediments/analysis , Hydrocarbons/analysis , Sterols/analysis , Water Pollutants, Chemical/analysis , Coal Tar , Petroleum , Rivers , Waste Disposal, Fluid
19.
Water Res ; 37(10): 2388-93, 2003 May.
Article in English | MEDLINE | ID: mdl-12727249

ABSTRACT

Extracellular polymeric substances were extracted from activated sludge using a resin exchange method and analyzed. The separation and identification of EPS were carried out by size exclusion chromatography and Fourier transform infrared micro-spectroscopy. Chromatograms of extracted EPS exhibited seven peaks. Proteins varying in molecular weights from 670 to 45 kDa were present in all the peaks. Polysaccharides corresponding to molecular weights of approximately 1 and approximately 0.5 kDa were present in only three peaks. Strong association of polysaccharides and proteins was observed. Infrared results revealed the presence of one type of polysaccharide and two types of proteins (A and B). Proteins differed mainly in the length of their associated alkyl chains and in the ratio of ester/acidic functionalities.


Subject(s)
Polymers/isolation & purification , Water Purification , Chromatography, Gel , Flocculation , Polysaccharides/isolation & purification , Proteins/isolation & purification , Sewage , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...