Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 9(1): 3312, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30824773

ABSTRACT

Activated proximal tubular epithelial cells (PTECs) play a crucial role in progressive tubulo-interstitial fibrosis in native and transplanted kidneys. Targeting PTECs by non-viral delivery vectors might be useful to influence the expression of important genes and/or proteins in order to slow down renal function loss. However, no clinical therapies that specifically target PTECs are available at present. We earlier showed that a cationic cell penetrating peptide isolated from South American rattlesnake venom, named crotamine, recognizes cell surface heparan sulfate proteoglycans and accumulates in cells. In healthy mice, crotamine accumulates mainly in kidneys after intraperitoneal (ip) injection. Herein we demonstrate for the first time, the overall safety of acute or long-term treatment with daily ip administrated crotamine for kidneys functions. Accumulation of ip injected crotamine in the kidney brush border zone of PTECs, and its presence inside these cells were observed. In addition, significant lower in vitro crotamine binding, uptake and reporter gene transport and expression could be observed in syndecan-1 deficient HK-2 PTECs compared to wild-type cells, indicating that the absence of syndecan-1 impairs crotamine uptake into PTECs. Taken together, our present data show the safety of in vivo long-term treatment with crotamine, and its preferential uptake into PTECs, which are especially rich in HSPGs such as syndecan-1. In addition to the demonstrated in vitro gene delivery mediated by crotamine in HK-2 cells, the potential applicability of crotamine as prototypic non-viral (gene) delivery nanocarrier to modulate PTEC gene and/or protein expression was confirmed.


Subject(s)
Cell-Penetrating Peptides , Crotalid Venoms , Epithelial Cells/metabolism , Kidney Tubules, Proximal/metabolism , Animals , Cell-Penetrating Peptides/adverse effects , Cell-Penetrating Peptides/pharmacokinetics , Cell-Penetrating Peptides/pharmacology , Crotalid Venoms/adverse effects , Crotalid Venoms/pharmacokinetics , Crotalid Venoms/pharmacology , Epithelial Cells/cytology , Kidney Tubules, Proximal/cytology , Male , Mice
2.
Article in English | MEDLINE | ID: mdl-30578843

ABSTRACT

The nuclear distribution element genes are conserved from fungus to humans. The nematode Caenorhabditis elegans expresses two isoforms of nuclear distribution element genes, namely nud-1 and nud-2. While nud-1 was functionally demonstrated to be the worm nudC ortholog, bioinformatic analysis revealed that the nud-2 gene encodes the worm ortholog of the mammalian NDE1 (Nuclear Distribution Element 1 or NudE) and NDEL1 (NDE-Like 1 or NudEL) genes, which share overlapping roles in brain development in mammals and also mediate the axon guidance in mammalian and C. elegans neurons. A significantly higher NDEL1 enzyme activity was shown in treatment non-resistant compared to treatment resistant SCZ patients, who essentially present response to the therapy with atypical clozapine but not with typical antipsychotics. Using C. elegans as a model, we tested the consequence of nud genes suppression in the effects of typical and atypical antipsychotics. To assess the role of nud genes and antipsychotic drugs over C. elegans behavior, we measured body bend frequency, egg laying and pharyngeal pumping, which traits are controlled by specific neurons and neurotransmitters known to be involved in SCZ, as dopamine and serotonin. Evaluation of metabolic and behavioral response to the pharmacotherapy with these antipsychotics demonstrates an important unbalance in serotonin pathway in both nud-1 and nud-2 knockout worms, with more significant effects for nud-2 knockout. The present data also show an interesting trend of mutant knockout worm strains to present a metabolic profile closer to that observed for the wild-type animals after the treatment with the typical antipsychotic haloperidol, but which was not observed for the treatment with the atypical antipsychotic clozapine. Paradoxically, behavioral assays showed more evident effects for clozapine than for haloperidol, which is in line with previous studies with rodent animal models and clinical evaluations with SCZ patients. In addition, the validity and reliability of using this experimental animal model to further explore the convergence between the dopamine/serotonin pathways and neurodevelopmental processes was demonstrated here, and the potential usefulness of this model for evaluating the metabolic consequences of treatments with antipsychotics is also suggested.


Subject(s)
Antipsychotic Agents/pharmacology , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , Animals , Animals, Genetically Modified , Behavior, Animal/drug effects , Behavior, Animal/physiology , Caenorhabditis elegans , Clozapine/pharmacology , Disease Models, Animal , Haloperidol/pharmacology , Movement/drug effects , Movement/physiology , Neurotransmitter Agents/pharmacology , Pharynx/drug effects , Pharynx/metabolism , Proton Magnetic Resonance Spectroscopy , Reproducibility of Results , Reproduction/drug effects , Schizophrenia/drug therapy , Schizophrenia/metabolism , Serotonin/pharmacology
3.
Amino Acids ; 50(2): 267-278, 2018 02.
Article in English | MEDLINE | ID: mdl-29235017

ABSTRACT

The efficacy of crotamine as antitumoral was first demonstrated by daily intraperitoneal (IP) injections of low doses of this toxin in an animal model bearing melanoma tumors. Significant inhibition of tumor growth and increased lifespan of mice bearing tumor was also noticed after 21 consecutive days of this daily IP administration of crotamine. However, due to the limited acceptance of treatments by IP route in clinical conditions, herein, we evaluated the antitumor effect of this native polypeptide employing the oral route. The efficacy of crotamine in inhibiting the melanoma growth in vivo, even after passing through the gastrointestinal tract of the animal, was confirmed here. In addition, biochemical biomarkers and also histopathological analysis showed both the absence of any potential toxic effects in tissues or organs of the animal in which the highest accumulation of crotamine is expected. Interestingly, a reduction of weight gain was observed mainly in animals with tumor treated with crotamine by IP route, but not by oral administration. Albeit, oral administered crotamine was able to significantly decrease the body weight gain of healthy animals without tumor. Taking advantage of this same experimental animal models receiving crotamine by oral route, it was possible to show metabolic changes as the increased capacity of glucose clearance, which was accompanied by a reduction of the total cholesterol, and by increased high-density lipoprotein levels, both observed mainly in the absence of tumor. Triglycerides and low-density lipoprotein were also significantly decreased, but only in the absence of tumor. Taken together, these data suggest a clear trend for metabolic positive effects and mischaracterize unhealthy condition of animals, with or without tumors, treated with crotamine for 21 days. In addition, this study confirmed the efficacy of crotamine administered by oral route as antitumor agent, which besides the additional advantage of administration convenience and decreased risk of toxic effects, allowed the serendipitous observation of several positive metabolic effects on treated animals.


Subject(s)
Crotalid Venoms/administration & dosage , Crotalid Venoms/pharmacology , Melanoma, Experimental/drug therapy , Metabolome/drug effects , Snake Venoms/chemistry , Administration, Oral , Amino Acid Sequence , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Crotalid Venoms/toxicity , Crotalus , Disease Models, Animal , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL