Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Dev Ind Pharm ; 40(6): 783-92, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23607724

ABSTRACT

Microemulsions (MEs) and self-emulsifying drug delivery systems (SEEDS) containing phenobarbital (Phe) were developed to improve its chemical stability, solubilizing capacity and taste-masking in oral liquid dosage forms. Cremophor® RH40 and Labrasol® were used as surfactants for the screening of ME regions, Capmul® MCM L, Captex® 355, Imwitor® 408, Myglyol® 840 and Isopropyl myristate were the oil phases assayed; Transcutol® P, Polyethylene-glycol 400, glycerol, Propylene-glycol and ethanol the cosurfactants. Phe stability assay was carried out (20:4:20:56% and 20:4:35:41% (w/w); surfactant:oily phase:cosurfactant:water) for both surfactants; only one containing ethanol showed significant dismissing in its drug content. Solubility capacity for these selected formulations were also evaluated, an amount between 17 and 58 mg/mL of Phe could be loaded. At last, an optimized ME formulation with Cremophor® RH40 20%, Capmul® MCM L 4%, PEG 400 35% and sucralose 2% (w/w) was chosen in order to optimize taste-masking using an electronic tongue. Strawberry along with banana and tutti-frutti flavors plus mint flavor proved to be the best ones. Labrasol-based pre-concentrates were tested for (micro)emulsifying properties; all of them resulted to behave as SEDDS. In summary, a rationale experimental design conducted to an optimized ME for Phe oral pediatric administration which was able to load 5-fold times the currently used dose (4 mg/mL), with no sign of physical or chemical instability and with improved taste; SEDDS for capsule filling were also obtained. The biopharmaceutical advantages described for these dosage forms encourage furthering in vivo evaluation.


Subject(s)
Anticonvulsants/administration & dosage , Drug Carriers/chemistry , Drug Compounding/methods , Lipids/chemistry , Phenobarbital/administration & dosage , Taste , Anticonvulsants/chemistry , Chemical Phenomena , Drug Stability , Emulsions , Microscopy, Electron, Transmission , Models, Biological , Oils/chemistry , Phenobarbital/chemistry , Rheology , Solubility , Surface Properties , Surface-Active Agents/chemistry
2.
Pak J Pharm Sci ; 26(1): 189-93, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23261747

ABSTRACT

The aim of this work was to evaluate water-lecithin-dispersions (WLDs) as carriers for amphotericin B (AmB) and to compare the drug solubility in WLDs and O/W lecithin-based submicron emulsions (SMEs) in order to evaluate the influence of lecithin content on the dosage form solubilization of the active compound. WLDs and different SMEs with either 1.2 or 2.4% of lecithin were prepared. WLD with 2.4% lecithin show a 10-fold increase in solubilization of AmB compared with 1.2% lecithin WLD. SMEs with 1.2% lecithin show an increase of over 400 times in solubilization compared with WLD containing the same concentration of lecithin, whereas SMEs with 2.4% lecithin show an increase of over 40 times compared with the corresponding WLD. Drug solubilization in SMEs with 2.4% lecithin is not significantly greater than in those containing 1.2% lecithin. The content of surfactant Brij 97 ® had a significant influence on drug solubilization in SMEs (P < 0.05). Results indicate that indicate that SMEs are proper systems to solubilize AmB. It can be assumed that solubilization is due to the formulation microstructure and not to the separate components themselves.


Subject(s)
Amphotericin B/chemistry , Anti-Infective Agents/chemistry , Drug Carriers , Lecithins/chemistry , Water/chemistry , Chemistry, Pharmaceutical , Drug Stability , Emulsions , Particle Size , Plant Oils/chemistry , Polyethylene Glycols/chemistry , Solubility , Surface-Active Agents/chemistry , Technology, Pharmaceutical/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...