Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 17(3): 326-339, 2023 03.
Article in English | MEDLINE | ID: mdl-36517527

ABSTRACT

Horizontal gene transfer is a powerful source of innovations in prokaryotes that can affect almost any cellular system, including microbial organelles. The formation of magnetosomes, one of the most sophisticated microbial mineral-containing organelles synthesized by magnetotactic bacteria for magnetic navigation in the environment, was also shown to be a horizontally transferrable trait. However, the mechanisms determining the fate of such genes in new hosts are not well understood, since non-adaptive gene acquisitions are typically rapidly lost and become unavailable for observation. This likely explains why gene clusters encoding magnetosome biosynthesis have never been observed in non-magnetotactic bacteria. Here, we report the first discovery of a horizontally inherited dormant gene clusters encoding biosynthesis of magnetosomes in a non-magnetotactic phototrophic bacterium Rhodovastum atsumiense. We show that these clusters were inactivated through transcriptional silencing and antisense RNA regulation, but retain functionality, as several genes were able to complement the orthologous deletions in a remotely related magnetotactic bacterium. The laboratory transfer of foreign magnetosome genes to R. atsumiense was found to endow the strain with magnetosome biosynthesis, but strong negative selection led to rapid loss of this trait upon subcultivation, highlighting the trait instability in this organism. Our results provide insight into the horizontal dissemination of gene clusters encoding complex prokaryotic organelles and illuminate the potential mechanisms of their genomic preservation in a dormant state.


Subject(s)
Magnetosomes , Magnetospirillum , Magnetospirillum/genetics , Magnetosomes/genetics , Bacteria/genetics , Gram-Negative Bacteria/genetics , Bacteria, Aerobic/genetics , Multigene Family , Magnetic Phenomena , Bacterial Proteins/genetics
2.
ISME J ; 11(12): 2740-2753, 2017 12.
Article in English | MEDLINE | ID: mdl-28753208

ABSTRACT

A growing body of circumstantial evidence suggests that ice nucleation active (Ice+) bacteria contribute to the initiation of precipitation by heterologous freezing of super-cooled water in clouds. However, little is known about the concentration of Ice+ bacteria in precipitation, their genetic and phenotypic diversity, and their relationship to air mass trajectories and precipitation chemistry. In this study, 23 precipitation events were collected over 15 months in Virginia, USA. Air mass trajectories and water chemistry were determined and 33 134 isolates were screened for ice nucleation activity (INA) at -8 °C. Of 1144 isolates that tested positive during initial screening, 593 had confirmed INA at -8 °C in repeated tests. Concentrations of Ice+ strains in precipitation were found to range from 0 to 13 219 colony forming units per liter, with a mean of 384±147. Most Ice+ bacteria were identified as members of known and unknown Ice+ species in the Pseudomonadaceae, Enterobacteriaceae and Xanthomonadaceae families, which nucleate ice employing the well-characterized membrane-bound INA protein. Two Ice+ strains, however, were identified as Lysinibacillus, a Gram-positive genus not previously known to include Ice+ bacteria. INA of the Lysinibacillus strains is due to a nanometer-sized molecule that is heat resistant, lysozyme and proteinase resistant, and secreted. Ice+ bacteria and the INA mechanisms they employ are thus more diverse than expected. We discuss to what extent the concentration of culturable Ice+ bacteria in precipitation and the identification of a new heat-resistant biological INA mechanism support a role for Ice+ bacteria in the initiation of precipitation.


Subject(s)
Air Microbiology , Bacteria/chemistry , Bacteria/genetics , Ice/analysis , Water/chemistry , Bacteria/classification , Bacteria/isolation & purification , Freezing , Genetic Variation , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...