Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
An Acad Bras Cienc ; 88 Suppl 1: 665-75, 2016.
Article in English | MEDLINE | ID: mdl-27142547

ABSTRACT

Scorpions belonging to the Tityus genus are of medical interest in Brazil. Among them, Tityus stigmurus is the main scorpion responsible for stings in the Northeast region. After a sting, the scorpion venom distributes rapidly to the organs, reaching the kidneys quickly. However, there are few studies concerning the renal pathophysiology of scorpion poisoning. In this study, we evaluated the effects of T. stigmurus venom (TsV) on renal parameters in isolated rat kidneys. Wistar rats (n = 6), weighing 250-300 g, were perfused with Krebs-Henseleit solution containing 6 g/100 mL bovine serum albumin. TsV at 0.3 and 1.0 µg/mL was tested, and the effects on perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), and electrolyte excretion were analyzed. Effects were observed only at TsV concentration of 1.0 µg/mL, which increased PP (controlPP40' = 92.7 ± 1.95; TsVPP40' = 182.0 ± 4.70* mmHg, *p < 0.05), RVR (controlRVR40' = 3.28 ± 0.23 mmHg; TstRVR40' = 6.76 ± 0.45* mmHg, *p < 0.05), UF (controlUF50' = 0.16 ± 0.04; TstUF50' = 0.60 ± 0.10* mL/g/min,*p < 0.05), GFR and electrolyte excretion, with histological changes that indicate renal tubular injury. In conclusion, T. stigmurus venom induces a transient increase in PP with tubular injury, both of which lead to an augmented electrolyte excretion.


Subject(s)
Kidney/drug effects , Scorpion Venoms/pharmacology , Scorpions , Animals , Brazil , Glomerular Filtration Rate/drug effects , Rats , Rats, Wistar , Scorpions/classification
2.
Toxicon ; 108: 126-33, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26410111

ABSTRACT

Snake envenomation (Bothrops genus) is common in tropical countries and acute kidney injury is one of the complications observed in Bothrops snakebite with relevant morbidity and mortality. Here, we showed that Bothropoides pauloensis venom (BpV) decreased cell viability (IC50 of 7.5 µg/mL). Flow cytometry with annexin V and propidium iodide showed that cell death occurred predominantly by apoptosis and late apoptosis, through caspases 3 and 7 activation, mitochondrial membrane potential collapse and ROS overproduction. BpV reduced perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate, percentage of sodium, chloride or potassium tubular transportation. These findings demonstrated that BpV cytotoxicity on renal epithelial cells might be responsible for the nephrotoxicity observed in isolated kidney.


Subject(s)
Bothrops , Crotalid Venoms/toxicity , Kidney Tubules/drug effects , Kidney/drug effects , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 7/metabolism , Cell Survival/drug effects , Dogs , Epithelial Cells/drug effects , Flow Cytometry , Glomerular Filtration Rate/drug effects , In Vitro Techniques , Madin Darby Canine Kidney Cells , Male , Membrane Potential, Mitochondrial/drug effects , Rats, Wistar , Reactive Oxygen Species/metabolism , Toxicity Tests , Vascular Resistance/drug effects
3.
PLoS One ; 10(7): e0132569, 2015.
Article in English | MEDLINE | ID: mdl-26193352

ABSTRACT

Acute renal failure is a common complication caused by Bothrops viper envenomation. In this study, the nefrotoxicity of a main component of B. leucurus venom called L-aminoacid oxidase (LAAO-Bl) was evaluated by using tubular epithelial cell lines MDCK and HK-2 and perfused kidney from rats. LAAO-Bl exhibited cytotoxicity, inducing apoptosis and necrosis in MDCK and HK-2 cell lines in a concentration-dependent manner. MDCK apoptosis induction was accompanied by Ca2+ release from the endoplasmic reticulum, reactive oxygen species (ROS) generation and mitochondrial dysfunction with enhanced expression of Bax protein levels. LAAO-Bl induced caspase-3 and caspase-7 activation in both cell lines. LAAO-Bl (10 µg/mL) exerts significant effects on the isolated kidney perfusion increasing perfusion pressure and urinary flow and decreasing the glomerular filtration rate and sodium, potassium and chloride tubular transport. Taken together our results suggest that LAAO-Bl is responsible for the nephrotoxicity observed in the envenomation by snakebites. Moreover, the cytotoxic of LAAO-Bl to renal epithelial cells might be responsible, at least in part, for the nephrotoxicity observed in isolated kidney.


Subject(s)
Acute Kidney Injury/chemically induced , Apoptosis/drug effects , Bothrops , Crotalid Venoms/pharmacology , Kidney/drug effects , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line , Kidney/metabolism , Kidney/pathology , Necrosis/metabolism , Necrosis/pathology , Rats , Reactive Oxygen Species/metabolism
4.
J Proteomics ; 114: 93-114, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25462430

ABSTRACT

The Caatinga lancehead, Bothrops erythromelas, is a medically relevant species, responsible for most of the snakebite accidents in most parts of its distribution range in northeastern Brazil. The spectrum and geographic variability of its venom toxins were investigated applying a venomics approach to venom pools from five geographic areas within the Caatinga ecoregion. Despite its wide habitat, populations of B. erythromelas from Ceará, Pernambuco, Juazeiro, Paraiba, and Ilha de Itaparica exhibit highly conserved venom proteomes. Mirroring their compositional conservation, the five geographic venom pools also showed qualitatively and quantitatively overlapping antivenomic profiles against antivenoms generated in Vital Brazil (BR) and Clodomiro Picado (CR) Institutes, using different venoms in the immunization mixtures. The paraspecificity exhibited by the Brazilian SAB and the Costa Rican BCL antivenoms against venom toxins from B. erythromelas indicates large immunoreactive epitope conservation across genus Bothrops during the last ~14 million years, thus offering promise for the possibility of generating a broad-spectrum bothropic antivenom. Biological Significance Accidental snakebite envenomings represent an important public health hazard in Brazil. Ninety per cent of the yearly estimated 20-30,000 snakebite accidents are caused by species of the Bothrops genus. Bothrops erythromelas, a small, moderately stocky terrestrial venomous snake, is responsible for most of the snakebite accidents in its broad distribution range in the Caatinga, a large ecoregion in northeastern Brazil. To gain a deeper insight into the spectrum of medically important toxins present in the venom of the Caatinga lancehead, we applied a venomics approach to define the proteome and geographic variability of adult B. erythromelas venoms from five geographic regions. Although intraspecific compositional variation between venoms among specimens from different geographic regions has long been appreciated by herpetologists and toxinologists as a general feature of highly adaptable and widely distributed snake species, the five B. erythromelas populations investigated exhibit highly conserved venom proteomes. The overall toxin profile of the Caatinga lancehead's venom explains the local and systemic effects observed in envenomations by B. erythromelas. The five geographic venom pools sampled also showed qualitatively and quantitatively overlapping antivenomic profiles against antivenoms generated using different bothropic venoms in the immunization mixtures. The large immunoreactive epitope conservation across genus Bothrops offers promise for the generation of a broad-spectrum bothropic antivenom.


Subject(s)
Antivenins/metabolism , Bothrops/metabolism , Crotalid Venoms/metabolism , Proteomics/methods , Amino Acid Sequence , Animals , Antivenins/analysis , Bothrops/classification , Brazil , Chromatography, High Pressure Liquid , Crotalid Venoms/analysis , Crotalid Venoms/immunology , Ecosystem , Electrophoresis, Gel, Two-Dimensional , Peptide Fragments/analysis , Proteome/analysis , Species Specificity
5.
Toxicon ; 88: 107-14, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24874890

ABSTRACT

Bothropoides insularis (jararaca-ilhoa) is a native endemic snake limited to the specific region of Queimada Island, on São Paulo coast. Several local and systemic effects have been described due to envenomation caused by it, such as edema, tissue necrosis, hemorrhage and acute renal failure. Our previous studies have shown that Bothropoides insularis venom (BinsV) demonstrated important functional and morphologic alterations in rat isolated kidney, especially decrease in tubular electrolyte transport, osmotic clearance and tubular necrosis. In order to elucidate the direct nephrotoxicity mechanism, the aim of the present study was to investigate BinsV cytotoxicity effect on renal epithelial cells. The treatment with BinsV over MDCK culture decreased cell viability in all concentrations tested with IC50 of 9 µg/mL. BinsV was able to induce membrane rupture and cell death with phosphatidilserine externalization. Furthermore, BinsV induced ROS overproduction and mitochondrial membrane potential collapse, as well as Bax translocation and caspases 3 and 7 expression. Therefore, these events might be responsible by BinsV-induced cell death caused by mitochondrial dysfunction and ROS overproduction in the direct cytotoxicity process.


Subject(s)
Bothrops , Crotalid Venoms/toxicity , Kidney Tubules/drug effects , Animals , Caspases/metabolism , Dogs , Epithelial Cells/drug effects , Epithelial Cells/pathology , Kidney Tubules/pathology , Madin Darby Canine Kidney Cells , Membrane Potential, Mitochondrial/drug effects , Necrosis , Reactive Oxygen Species/metabolism
6.
Antimicrob Agents Chemother ; 58(4): 1872-8, 2014.
Article in English | MEDLINE | ID: mdl-24395230

ABSTRACT

Nephrotoxicity is the main complication of gentamicin (GM) treatment. GM induces renal damage by overproduction of reactive oxygen species and inflammation in proximal tubular cells. Phenolic compounds from ginger, called gingerols, have been demonstrated to have antioxidant and anti-inflammatory effects. We investigated if oral treatment with an enriched solution of gingerols (GF) would promote a nephroprotective effect in an animal nephropathy model. The following six groups of male Wistar rats were studied: (i) control group (CT group); (ii) gingerol solution control group (GF group); (iii) gentamicin treatment group (GM group), receiving 100 mg/kg of body weight intraperitoneally (i.p.); and (iv to vi) gentamicin groups also receiving GF, at doses of 6.25, 12.5, and 25 mg/kg, respectively (GM+GF groups). Animals from the GM group had a significant decrease in creatinine clearance and higher levels of urinary protein excretion. This was associated with markers of oxidative stress and nitric oxide production. Also, there were increases of the mRNA levels for proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-1ß [IL-1ß], IL-2, and gamma interferon [IFN-γ]). Histopathological findings of tubular degeneration and inflammatory cell infiltration reinforced GM-induced nephrotoxicity. All these alterations were attenuated by previous oral treatment with GF. Animals from the GM+GF groups showed amelioration in renal function parameters and reduced lipid peroxidation and nitrosative stress, in addition to an increment in the levels of glutathione (GSH) and superoxide dismutase (SOD) activity. Gingerols also promoted significant reductions in mRNA transcription for TNF-α, IL-2, and IFN-γ. These effects were dose dependent. These results demonstrate that GF promotes a nephroprotective effect on GM-mediated nephropathy by oxidative stress, inflammatory processes, and renal dysfunction.


Subject(s)
Catechols/pharmacology , Fatty Alcohols/pharmacology , Gentamicins/toxicity , Kidney/drug effects , Kidney/metabolism , Zingiber officinale/chemistry , Animals , Antioxidants/metabolism , Glutathione/metabolism , Interleukin-1beta/metabolism , Interleukin-2/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxidation/genetics , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
7.
Phytochemistry ; 96: 457-64, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24075572

ABSTRACT

From the leaves of Solanum campaniforme (Solanaceae), eight solanidane alkaloids were isolated, four of which contain a p-hydroxyphenylethylamine unit. Their structures were established as: 22ß,23ß-epoxy-solanida-1,4-dien-3-one; 22α,23α-epoxy-10-epi-solanida-1,4,9-trien-3-one; 22α,23α-epoxy-solanida-4-en-3-one; 22ß,23ß-epoxy-solanida-4-en-3-one; (E)-N-[8'(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4,9-trien-3-imine; (E)-N-[8'(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4-dien-3-imine; (Z)-N-[8'(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4,9-trien-3-imine and (Z)-N-[8'(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4-dien-3-imine. All structures were determined using spectroscopic techniques, such as 1D and 2D NMR, and HRESIMS. The cytotoxicity and the antiophidic activities of the alkaloids were evaluated. The alkaloids did not show any cytotoxicity, but inhibited the main toxic actions of Bothrops pauloensis venom.


Subject(s)
Alkaloids/isolation & purification , Solanum/chemistry , Alkaloids/chemistry , Alkaloids/pharmacology , Brazil , Crotalid Venoms/antagonists & inhibitors , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Plant Leaves/chemistry , Stereoisomerism
8.
Toxicon ; 74: 19-26, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23911732

ABSTRACT

Mammalian natriuretic peptides (NPs) have been extensively investigated for use as therapeutic agents in the treatment of cardiovascular diseases. Here, we describe the isolation, sequencing and tridimensional homology modeling of the first C-type natriuretic peptide isolated from scorpion venom. In addition, its effects on the renal function of rats and on the mRNA expression of natriuretic peptide receptors in the kidneys are delineated. Fractionation of Tityus serrulatus venom using chromatographic techniques yielded a peptide with a molecular mass of 2190.64 Da, which exhibited the pattern of disulfide bridges that is characteristic of a C-type NP (TsNP, T. serrulatus Natriuretic Peptide). In the isolated perfused rat kidney assay, treatment with two concentrations of TsNP (0.03 and 0.1 µg/mL) increased the perfusion pressure, glomerular filtration rate and urinary flow. After 60 min of treatment at both concentrations, the percentages of sodium, potassium and chloride transport were decreased, and the urinary cGMP concentration was elevated. Natriuretic peptide receptor-A (NPR-A) mRNA expression was down regulated in the kidneys treated with both concentrations of TsNP, whereas NPR-B, NPR-C and CG-C mRNAs were up regulated at the 0.1 µg/mL concentration. In conclusion, this work describes the isolation and modeling of the first natriuretic peptide isolated from scorpion venom. In addition, examinations of the renal actions of TsNP indicate that its effects may be related to the activation of NPR-B, NPR-C and GC-C.


Subject(s)
Kidney/drug effects , Natriuretic Peptide, C-Type/isolation & purification , Scorpion Venoms/isolation & purification , Scorpions/chemistry , Amino Acid Sequence , Animals , Brazil , Cyclic GMP/genetics , Cyclic GMP/metabolism , Down-Regulation , Glomerular Filtration Rate , Kidney/metabolism , Male , Molecular Sequence Data , Natriuretic Peptide, C-Type/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism , Scorpion Venoms/chemistry , Sequence Alignment , Up-Regulation
9.
Article in English | LILACS, VETINDEX | ID: biblio-954706

ABSTRACT

Background : Apis mellifera stings are a problem for public health worldwide, particularly in Latin America due to the aggressiveness of its Africanized honeybees. Massive poisoning by A. mellifera venom (AmV) affects mainly the cardiovascular system, and several works have described its actions on heart muscle. Nevertheless, no work on the pharmacological action mechanisms of the AmV in isolated aorta has been reported. Thus, the present work aimed to investigate the actions of AmV and its main fractions, phospholipase A2 (PLA2) and melittin, on isolated aorta rings and a probable action mechanism. Results : AmV and the complex PLA2 + melittin (0.1-50 μg/mL) caused contraction in endothelium-containing aorta rings, but neither isolated PLA2 nor melittin were able to reproduce the effect. Endothelium removal did not change the maximum vasoconstrictor effect elicited by AmV. Ca2+-free medium, as well as treatment with phentolamine (5 μM), verapamil (10 μM), losartan (100 μM), and U-73122 (10 μM, a phospholipase C inhibitor), eliminated the AmV-induced contractile effects. Conclusions : In conclusion, AmV caused contractile effect in aorta rings probably through the involvement of voltage-operated calcium channels, AT1 and α-adrenergic receptors via the downstream activation of phospholipase C. The protein complex, PLA2 + melittin, was also able to induce vasoconstriction, whereas the isolated proteins were not.(AU)


Subject(s)
Animals , Rats , Vasoconstrictor Agents , Bees , Cardiovascular System , Phospholipases A2 , Bites and Stings
10.
BMC Complement Altern Med ; 12: 139, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-22925825

ABSTRACT

BACKGROUND: Harpalycin 2 (HP-2) is an isoflavone isolated from the leaves of Harpalyce brasiliana Benth., a snakeroot found in northeast region of Brazil and used in folk medicine to treat snakebite. Its leaves are said to be anti-inflammatory. Secretory phospholipases A2 are important toxins found in snake venom and are structurally related to those found in inflammatory conditions in mammals, as in arthritis and atherosclerosis, and for this reason can be valuable tools for searching new anti-phospholipase A2 drugs. METHODS: HP-2 and piratoxin-III (PrTX-III) were purified through chromatographic techniques. The effect of HP-2 in the enzymatic activity of PrTX-III was carried out using 4-nitro-3-octanoyloxy-benzoic acid as the substrate. PrTX-III induced platelet aggregation was inhibited by HP-2 when compared to aristolochic acid and p-bromophenacyl bromide (p-BPB). In an attempt to elucidate how HP-2 interacts with PrTX-III, mass spectrometry, circular dichroism and intrinsic fluorescence analysis were performed. Docking scores of the ligands (HP-2, aristolochic acid and p-BPB) using PrTX-III as target were also calculated. RESULTS: HP-2 inhibited the enzymatic activity of PrTX-III (IC50 11.34 ± 0.28 µg/mL) although it did not form a stable chemical complex in the active site, since mass spectrometry measurements showed no difference between native (13,837.34 Da) and HP-2 treated PrTX-III (13,856.12 Da). A structural analysis of PrTX-III after treatment with HP-2 showed a decrease in dimerization and a slight protein unfolding. In the platelet aggregation assay, HP-2 previously incubated with PrTX-III inhibited the aggregation when compared with untreated protein. PrTX-III chemical treated with aristolochic acid and p-BPB, two standard PLA2 inhibitors, showed low inhibitory effects when compared with the HP-2 treatment. Docking scores corroborated these results, showing higher affinity of HP-2 for the PrTX-III target (PDB code: 1GMZ) than aristolochic acid and p-BPB. HP-2 previous incubated with the platelets inhibits the aggregation induced by untreated PrTX-III as well as arachidonic acid. CONCLUSION: HP-2 changes the structure of PrTX-III, inhibiting the enzymatic activity of this enzyme. In addition, PrTX-III platelet aggregant activity was inhibited by treatment with HP-2, p-BPB and aristolochic acid, and these results were corroborated by docking scores.


Subject(s)
Benzodioxoles/pharmacology , Bothrops , Crotalid Venoms/enzymology , Enzyme Inhibitors/pharmacology , Fabaceae/chemistry , Group II Phospholipases A2/antagonists & inhibitors , Isoflavones/pharmacology , Platelet Aggregation/drug effects , Acetophenones/pharmacology , Animals , Aristolochic Acids/pharmacology , Benzodioxoles/isolation & purification , Benzodioxoles/therapeutic use , Brazil , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/therapeutic use , Group II Phospholipases A2/chemistry , Humans , Isoflavones/isolation & purification , Isoflavones/therapeutic use , Nitrobenzoates/metabolism , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves , Reptilian Proteins/antagonists & inhibitors , Reptilian Proteins/chemistry , Snake Bites/drug therapy , Snake Bites/enzymology
11.
Article in English | MEDLINE | ID: mdl-22899963

ABSTRACT

Secretory phospholipases A(2) (sPLA(2)) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA(2) from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA(2) tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom) at 78.8%, Apis (from bee venom) at 87.7%, and Naja (N. naja venom) at 88.1%. Edema induced by exogenous sPLA(2) administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA(2)s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA(2) inhibition.

12.
Pharmacol Rep ; 64(2): 282-92, 2012.
Article in English | MEDLINE | ID: mdl-22661177

ABSTRACT

BACKGROUND: Red and brown algae sulfated polysaccharides (SPs) have been widely investigated as antinociceptive and/or anti-inflammatory agents; however, no description of these biological properties concerning green algae SPs have been reported. Caulerpa curpressoides (Chlorophyta) presents three SPs fractions (Cc-SP1, Cc-SP2, and Cc-SP3). Anticoagulant (in vitro) and anti- and pro-thrombotic (in vivo) effects of Cc-SP2 had been recently reported. We evaluated the effects of Cc-SP2 using models of nociception and acute inflammation in vivo. METHODS: Male Swiss mice received Cc-SP2 (iv) 30 min prior to receiving 0.6% acetic acid (10 ml/kg, ip), 1% formalin (20 µl, sc) or were subjected to thermal stimuli (51 ± 1 °C). Cc-SP2 was injected sc to male Wistar rats in a peritonitis model or a paw edema model using carrageenan (ip or ipl, 500 µg). To analyze the systemic effects, Cc-SP2 (27 mg/kg, sc) was administrated to both genders mice before waiting for 14 days. RESULTS: Cc-SP2 (3, 9 or 27 mg/kg) reduced (p < 0.05) the number of writhes induced by acetic acid by 57, 89.9 and 90.6%, respectively, the licking time in the first (9 or 27 mg/kg with 42.47 and 52.1%, respectively) and the second (3, 9 or 27 mg/kg with 68.95, 82.34 and 84.61%, respectively) phases. In the hot-plate test, the antinociceptive effect of Cc-SP2 (9 mg/kg) was primarily observed at 60 min (26.7 ± 1.2 s), with its effect reversed by naloxone (8.6 ± 1.3 s), suggesting the involvement of the opioid system. Cc-SP2 (3, 9 or 27 mg/kg, sc, p < 0.05) showed anti-inflammatory effects by decreasing neutrophils migration by 64, 69 and 73%, respectively, and potently reduced the paw edema, especially at the second (0.16 ± 0.02, 0.16 ± 0.03 and 0.12 ± 0.05 ml) and third (0.16 ± 0.03, 0.18 ± 0.02 and 0.14 ± 0.04 ml) hours, respectively. Cc-SP2 did not cause hepatic or renal alterations or affect body mass or the macroscopy of the organs examined (p > 0.05). Histopathological analyses of the liver and kidney showed that both organs were affected by Cc-SP2 treatment, but these effects were considered reversible. CONCLUSION: The results indicate that the analgesic and anti-inflammatory effects of Cc-SP2 could be of biomedical applicability as a new, natural tool in pain and acute inflammatory conditions.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Caulerpa/chemistry , Chlorophyta/chemistry , Edema/drug therapy , Pain/drug therapy , Peritonitis/drug therapy , Polysaccharides/therapeutic use , Acute Disease , Animals , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Disease Models, Animal , Female , Heart/drug effects , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Male , Mice , Myocardium/pathology , Pain Measurement , Polysaccharides/adverse effects , Polysaccharides/isolation & purification , Rats , Rats, Wistar
13.
Nat Prod Commun ; 7(1): 71-4, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22428250

ABSTRACT

The therapeutic potential of toxins has aroused great interest in the scientific community. Microbial resistance is a serious current public health problem, in part because of the wide use of antimicrobial drugs. Furthermore, there are several problems in the treatment of parasitic diseases such as leishmaniosis and Chagas' disease, including the low efficacy in some clinical phases of the diseases and the loss of effectiveness of benzonidazole in the chronic phase of Chagas' disease. In this context, the aim of this work was to study the antimicrobial and antiparasitic effects of Bothropoides lutzi total venom (BltTV). The venom exerted an antibacterial effect on S. aureus, with MIC=MLC=200 microg/mL. The inhibitory effects of BltTV on promastigote forms of Leishmania amazonensis and L. chagasi were assessed by counting of viable cells after incubation with BltTV. IC50 values of 234.6 microg/mL and 61.2 microg/mL, were obtained, respectively. Furthermore, the venom repressed epimastigote forms of Trypanosoma cruzi growth. Finally, BltTV was verified to affect murine peritoneal macrophages, causing a cytotoxic effect at the highest concentrations (100 and 50 microg/mL). In conclusion, Bothropoides lutzi venom demonstrated antibacterial and antiparasite effects, suggesting that the venom contains some substance(s) of therapeutic value.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiprotozoal Agents/pharmacology , Bothrops , Crotalid Venoms/pharmacology , Animals , Female , Leishmania/drug effects , Mice
14.
J Exp Ther Oncol ; 9(3): 249-53, 2011.
Article in English | MEDLINE | ID: mdl-22070057

ABSTRACT

BACKGROUND: Animal venoms are complex mixtures of proteins and non proteins components with several biological activities. Snake venoms represent an essentially unexplored source of bioactive compounds that may cure disease conditions which do not respond to currently available therapies. These venoms possess many pharmacological activities, as cytotoxic and/or lytic effects on tumor cells in vitro. Herein, were investigated the in vitro cytotoxicity of three Bothrops venoms in tumor cell lines. METHODS: Cytotoxic effect was evaluated in HCT-8 (colon - human), SF-295 (nervous system - human), HL-60 (human leukemia) and MDAMB-435 (breast - human). Cell density and membrane integrity were determined by the exclusion of propidium iodide. To determine whether Bothrops venoms treated cells were undergoing an apoptotic and/ or necrosis death, phosphatidylserine (PS) externalization was measured after the incubation with the venom. RESULTS: Botrhops venons showed significant cytotoxcity against all cell lines in study. Cell density and membrane integrity were determined by the exclusion of propidium iodide. The Bothrops venoms reduced the cell number and revealed the presence of a necrotic population when the cells was exposed to the B. pauloensis B. diporus and B. pirajai venoms. To determine whether Bothrops venoms treated cells were undergoing an apoptotic and/or necrosis death, PS externalization was measured after the incubation with the venom and it was observed necrotic and apoptotic cells. CONCLUSIONS: All Bothrops venoms tested showed cytotoxicity against tumor cell lines through inducing of necrosis and apoptosis.


Subject(s)
Apoptosis/drug effects , Bothrops , Cell Line, Tumor/drug effects , Crotalid Venoms/pharmacology , Animals , Breast Neoplasms , Cell Proliferation/drug effects , Cell Survival/drug effects , Colonic Neoplasms , Female , HL-60 Cells , Humans , Necrosis , Nervous System Neoplasms
15.
J Pharm Pharmacol ; 63(9): 1186-94, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21827491

ABSTRACT

OBJECTIVES: Sertraline is often prescribed to patients suffering with end stage renal disease, but its action on kidney has not been investigated. We aimed to investigate the pharmacological action of sertraline on rat kidney with emphasis on the underlying mechanisms involved in the vascular actions of the drug. METHODS: The effects of sertraline were evaluated in rat isolated perfused kidneys and on ring preparations of mesenteric or segmental rat renal artery. KEY FINDINGS: In kidneys, sertraline prevented the effects of phenylephrine on perfusion pressure, glomerular filtration rate, urinary flow and renal vascular resistance. In mesenteric rings sertraline inhibited phenylephrine-induced contractions with potency 30-times lower than verapamil. Sertraline reversed sustained contractions induced by phenylephrine or 60mm K(+) within a similar concentration range. In segmental isolated rings, sertraline also reversed contractions induced by phenylephrine or 60mm K(+) with the same concentration range, but with higher potency compared with mesenteric preparations. Under Ca(2+) -free conditions, sertraline did not change the intracellularly-mediated phasic contractions induced by phenylephrine or caffeine. Sertraline was ineffective against contractions induced by extracellular Ca(2+) restoration after thapsigargin treatment and Ca(2+) store depletion with phenylephrine. Conversely, sertraline decreased the contractions induced by Ca(2+) addition in tissues under high K(+) solution or phenylephrine plus verapamil. CONCLUSIONS: In rat isolated kidneys and in rat ring preparations of mesenteric or renal vessels, sertraline had antispasmodic effects that appeared to be caused by a direct action on vascular smooth muscle cells. Its actions were ineffective against Ca(2+) -releasing intracellular pathways, but appeared to interfere with sarcolemmal Ca(2+) influx with reduced permeability of both receptor- and voltage-gated Ca(2+) channels.


Subject(s)
Kidney/drug effects , Muscle, Smooth, Vascular/drug effects , Sertraline/pharmacology , Vascular Resistance/drug effects , Vasodilator Agents/pharmacology , Animals , Caffeine/pharmacology , Calcium/metabolism , Calcium Channel Blockers , Glomerular Filtration Rate/drug effects , Kidney/physiology , Male , Mesentery/blood supply , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/physiology , Parasympatholytics/pharmacology , Phenylephrine/pharmacology , Pressure , Rats , Rats, Wistar , Renal Artery/drug effects , Renal Artery/physiology , Sarcolemma/metabolism , Thapsigargin/pharmacology , Urination/drug effects , Vasoconstriction/drug effects , Verapamil/pharmacology
16.
Nat Prod Commun ; 6(6): 871-4, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21815429

ABSTRACT

Crotalus durissus cascavella is a snake native of northeastern Brazil. The aim of the study was to investigate the effects of C. d. cascavella venom on rat mean arterial pressure and vascular reactivity in the mesenteric vascular bed. The venom evoked a dose-dependent decrease in mean arterial pressure, cardiac and respiratory frequency with increased plasma nitrite levels. L-NAME (10 mg/kg) blunted both the hypotension and increased nitrite production observed after the venom administration. To investigate the effects of C. d. cascavella in resistance vessels, the vascular mesenteric bed was studied, and the results suggested that the hypotensive effect of the venom is not dependent on a direct vasodilatory activity. In conclusion, C. d. cascavella venom presented indirect hypotensive effects with the involvement of nitric oxide.


Subject(s)
Crotalid Venoms/chemistry , Crotalid Venoms/toxicity , Crotalus/physiology , Hypotension/chemically induced , Animals , Blood Pressure/drug effects , Heart Rate/drug effects , Nitrites/metabolism , Rats , Rats, Wistar , Respiration/drug effects
17.
Toxicon ; 55(4): 795-804, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-19944711

ABSTRACT

Some proteins present in snake venom possess enzymatic activities, such as phospholipase A(2) and l-amino acid oxidase. In this study, we verify the action of the Bothrops marajoensis venom (BmarTV), PLA(2) (BmarPLA(2)) and LAAO (BmarLAAO) on strains of bacteria, yeast, and Leishmania sp. The BmarTV was isolated by Protein Pack 5PW, and several fractions were obtained. Reverse phase HPLC showed that BmarPLA(2) was isolated from the venom, and N-terminal amino acid sequencing of sPLA(2) showed high amino acid identity with other lysine K49 sPLA(2)s isolated from Bothrops snakes. The BmarLAAO was purified to high molecular homogeneity and its N-terminal amino acid sequence demonstrated a high degree of amino acid conservation with others LAAOs. BmarLAAO was able to inhibit the growth of P. aeruginosa, C. albicans and S. aureus in a dose-dependent manner. The inhibitory effect was more significant on S. aureus, with a MIC=50 microg/mL and MLC=200 microg/mL. However, the BmarTV and BmarPLA(2) did not demonstrate inhibitory capacity. BmarLAAO was able to inhibit the growth of promastigote forms of L. chagasi and L. amazonensis, with an IC(50)=2.55 microg/mL and 2.86 microg/mL for L. amazonensis and L. chagasi, respectively. BmarTV also provided significant inhibition of parasitic growth, with an IC(50) of 86.56 microg/mL for L. amazonensis and 79.02 microg/mL for L. chagasi. BmarPLA(2) did not promote any inhibition of the growth of these parasites. The BmarLAAO and BmarTV presented low toxicity at the concentrations studied. In conclusion, whole venom as well as the l-amino acid oxidase from Bothrops marajoensis was able to inhibit the growth of several microorganisms, including S. aureus, Candida albicans, Pseudomonas aeruginosa, and Leishmania sp.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiprotozoal Agents/pharmacology , Crotalid Venoms/pharmacology , L-Amino Acid Oxidase/pharmacology , Phospholipases A2/pharmacology , Amino Acid Sequence , Animals , Bothrops , Chromatography, DEAE-Cellulose , Chromatography, High Pressure Liquid , Crotalid Venoms/chemistry , Crotalid Venoms/enzymology , Electrophoresis, Polyacrylamide Gel , L-Amino Acid Oxidase/chemistry , Macrophages/drug effects , Microbial Sensitivity Tests , Molecular Sequence Data , Phospholipases A2/chemistry , Sequence Homology, Amino Acid
18.
Regul Pept ; 158(1-3): 6-13, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-19632278

ABSTRACT

In a variety of animal models, uroguanylin causes diuresis, natriuresis and kaliuresis and is found in larger concentrations in the urine compared to controls after oral salt intake or in conditions of excess salt and fluid retention. It has been proposed that uroguanylin functions as an intestinal natriuretic hormone following intake of meals high in salt content. In the present work, we examined if 10 days of salt ingestion resulted in an enhanced response to uroguanylin in the isolated perfused rat kidney. Rats were given normal water, 1% NaCl (HS1%), or 2% NaCl (HS2%) for 10 days, at which time the right kidneys were surgically removed and perfused with a modified Krebs-Henseleit solution for 30 min. After a 30-min control period, the kidneys were perfused with a modified Krebs-Henseleit solution containing 0.06 microM uroguanylin for an additional 90 min. Compared to vehicle-matched time controls, 0.06 microM uroguanylin perfusion of kidneys from rats maintained on HS2% resulted in a significantly increased urine flow (UF; from 0.17+/-0.01 to 0.23+/-0.01, after 60 min, n=6, P<0.05), fractional Na(+) excretion (%E(Na+); from 16.6+/-0.7 to 30+/-2, after 60 min, n=6, P<0.05), fractional K(+) excretion (%E(K+); from 20.5+/-0.58 to 37.4+/-2.1, after 60 min, n=6, P<0.05), and fractional Cl(-) excretion increased from 18.16+/-0.52 to 35.2+/-2.0 at 60 min, n=6, P<0.05. With the exception of a significant increase in the %E(K)(+), no other effect was observed in the kidneys from the rats maintained on HS1%, and no significant effects were seen in those that were maintained on normal water. The effect of a higher dose (0.6 microM) of uroguanylin on urinary flow, sodium or potassium excretion was also significantly increased by 2% NaCl (HS2%) treatment (P<0.05). We also observed an expressive upregulation of the GC-C and a slight downregulation of the GC-A receptor in high-salt treated rats. These data demonstrate that prolonged salt ingestion primes the kidney to enhanced renal responses to uroguanylin.


Subject(s)
Kidney/drug effects , Natriuretic Peptides/pharmacology , Sodium Chloride, Dietary/administration & dosage , Amino Acid Sequence , Animals , Base Sequence , DNA Primers , In Vitro Techniques , Kidney/physiology , Natriuretic Peptides/administration & dosage , Natriuretic Peptides/chemistry , Perfusion , Rats , Rats, Inbred WKY
19.
Toxicon ; 54(4): 413-20, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19463845

ABSTRACT

Sea anemones contain a variety of biologically active substances. Bunodosoma caissarum is a sea anemone from the Cnidaria phylum, found only in Brazilian coastal waters. The aim of the present work was to study the biological effects of PLA(2) isolated from the sea anemone B. caissarum on the isolated perfused kidney, the arteriolar mesenteric bed and on insulin secretion. Specimens of B. caissarum were collected from the São Vicente Channel on the southern coast of the State of São Paulo, Brazil. Reverse phase HPLC analysis of the crude extract of B. caissarum detected three PLA(2) proteins (named BcPLA(2)1, BcPLA(2)2 and BcPLA(2)3) found to be active in B. caissarum extracts. MALDI-TOF mass spectrometry of BcPLA(2)1 showed one main peak at 14.7 kDa. The N-terminal amino acid sequence of BcPLA(2)1 showed high amino acid sequence identity with PLA(2) group III protein isolated from the Mexican lizard (PA23 HELSU, HELSU, PA22 HELSU) and with the honey bee Apis mellifera (PLA(2) and 1POC_A). In addition, BcPLA(2)1 also showed significant overall homology to bee PLA(2). The enzymatic activity induced by native BcPLA(2)1 (20 microg/well) was reduced by chemical treatment with p-bromophenacyl bromide (p-BPB) and with morin. BcPLA(2)1 strongly induced insulin secretion in presence of high glucose concentration. In isolated kidney, the PLA(2) from B. caissarum increased the perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate, and sodium, potassium and chloride levels of excretion. BcPLA(2)1, however, did not increase the perfusion pressure on the mesenteric vascular bed. In conclusion, PLA(2), a group III phospholipase isolated from the sea anemone B. caissarum, exerted effects on renal function and induced insulin secretion in conditions of high glucose concentration.


Subject(s)
Phospholipases A2/pharmacology , Sea Anemones/enzymology , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Glucose/metabolism , In Vitro Techniques , Insulin/metabolism , Insulin Secretion , Kidney/drug effects , Male , Mesenteric Arteries/drug effects , Molecular Sequence Data , Phospholipases A2/chemistry , Phospholipases A2/isolation & purification , Rats , Rats, Wistar , Sequence Alignment , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
20.
Toxicon ; 52(8): 852-7, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18835290

ABSTRACT

In the present study we show that phospholipases A2 isolated from porcine pancreas (PP-PLA2) and Crotalus durissus terrificus snake venom (SV-PLA2) induced dose-dependent increases of LDH release from rabbit proximal tubules in suspension. Both porcine and crotalic PLA(2)s induced increases in non-esterified fatty acid (NEFA) levels (microg of NEFA/mg of tubule protein). It was observed that the NEFA levels in the pellets were higher than in the supernatant for both PLA2, and were dose-dependent for the crotalic PLA2 group. Furthermore, snake venom PLA2 induced a decrease in mitochondrial membrane potential (DeltaPsi(m)) assessed by both JC-1 uptake and safranin O uptake. Porcine PLA2 produced no effects on JC-1 uptake with the highest concentrations and an unexpected increase in the group treated with the lowest concentration. In contrast, the safranin O method revealed decreases of energization with both phospholipases, so it had higher sensitivity to the presence of the increased NEFA levels. Addition of delipidated bovine serum albumin (dBSA) completely reversed the effects induced by phospholipases on DeltaPsi(m) measured with safranin O. Incubation with pancreatic and crotalic phospholipases A2 produced no changes on cell ATP levels. We conclude that the treatment of proximal tubule suspensions with porcine or crotalic phospholipases disturbed membrane integrity as well as mitochondrial function. Specific early NEFA-mediated mitochondrial effects of the phospholipases used in the present study are indicated by the benefit provided by dBSA.


Subject(s)
Crotalid Venoms/enzymology , Crotalus , Kidney Tubules, Proximal/metabolism , Pancreas/enzymology , Phospholipases A2/toxicity , Adenosine Triphosphate/metabolism , Animals , Cells, Cultured , Fatty Acids, Nonesterified/metabolism , Indicators and Reagents/metabolism , L-Lactate Dehydrogenase/metabolism , Membrane Potential, Mitochondrial/drug effects , Pancreas/drug effects , Phenazines/metabolism , Phospholipases A2/metabolism , Rabbits , Statistics, Nonparametric , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...