Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 927: 172235, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582125

ABSTRACT

Plastic pollution is a global challenge that affects all marine ecosystems, and reflects all types of uses and activities of human society in these environments. In marine ecosystems, microplastics and mesoplastics interact with invertebrates and become available to higher predators, such as fish, which can ingest these contaminants. This study aimed to analyze how ecological food interactions (diet overlap and trophic niche amplitude) among fish species contribute to the ingestion of plastic particles. The gastrointestinal contents of six fish species (Atherinella brasiliensis, Eucinostomus melanopterus, Eucinostomus argenteus, Genidens genidens, Coptodon rendalli, and Geophagus brasiliensis) were analyzed to identify prey items and plastic ingestion. Based on the ontogenetic classification, A. brasiliensis, E. melanopterus, and G. genidens were divided into juveniles and adults, and the six fish species analyzed were divided into nine predator groups. Most of the plastics ingested by the fish species were blue microplastic (MP) fibers (< 0.05 mm) classified as polyester terephthalate, polyethylene, and polybutadiene. Considering all the analyzed predators, the average number and weight of plastics ingested per individual were 2.01 and 0.0005 g, respectively. We observed that predators with a high trophic overlap could present a relationship with the intake of MP fibers owing to predation on the same resources. In addition, we observed the general pattern that when a species expands its trophic diversity and niche, it can become more susceptible to plastic ingestion. For example, the species with the highest Levin niche amplitude, E. argenteus juveniles, had the highest mean number (2.9) of ingested MP fibers. Understanding the feeding ecology and interactions among species, considering how each predator uses habitats and food resources, can provide a better understanding of how plastic particle contamination occurs and which habitats are contaminated with these polluting substances.


Subject(s)
Environmental Monitoring , Fishes , Food Chain , Microplastics , Water Pollutants, Chemical , Animals , Fishes/physiology , Water Pollutants, Chemical/analysis , Gastrointestinal Contents/chemistry , Plastics/analysis , Ecosystem
2.
Mar Pollut Bull ; 179: 113648, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35460945

ABSTRACT

With the objective of characterizing the composition and spatial distribution of plastic fragments in a subtropical lagoon system, five sample areas affected by various anthropogenic impacts were chosen in the southern part of the Estuarine Lagoon System in Laguna, Santa Catarina, Brazil. The total density of the floating meso- and microplastics encountered was 7.32/m3, with the greatest density in the access channel and external area of the lagoon. Plastic filament was the most abundant and mainly comprised polyester (PET), polypropylene (PP) and polyethylene (PE) from 0.05 to 0.71 mm2. Fishing and urbanization were the main sources of the meso- and microplastics in the environment. This is the first study to evaluate contamination by meso- and microplastics in the southern part of the Estuarine Lagoon System and provides information about the nature and extent of contamination by plastics in this estuarine ecosystem.


Subject(s)
Plastics , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Microplastics , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...