Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inflamm Res ; 72(2): 203-215, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36401631

ABSTRACT

OBJECTIVE: This study aimed to investigate the effects of FK506 on experimental sepsis immunopathology. It investigated the effect of FK506 on leukocyte recruitment to the site of infection, systemic cytokine production, and organ injury in mice with sepsis. METHODS: Using a murine cecal ligation and puncture (CLP) peritonitis model, the experiments were performed with wild-type (WT) mice and mice deficient in the gene Nfat1 (Nfat1-/-) in the C57BL/6 background. Animals were treated with 2.0 mg/kg of FK506, subcutaneously, 1 h before the sepsis model, twice a day (12 h/12 h). The number of bacteria colony forming units (CFU) was manually counted. The number of neutrophils in the lungs was estimated by the myeloperoxidase (MPO) assay. The expression of CXCR2 in neutrophils was determined using flow cytometry analysis. The expression of inflammatory cytokines in macrophage was determined using ELISA. The direct effect of FK506 on CXCR2 internalization was evaluated using HEK-293T cells after CXCL2 stimulation by the BRET method. RESULTS: FK506 treatment potentiated the failure of neutrophil migration into the peritoneal cavity, resulting in bacteremia and an exacerbated systemic inflammatory response, which led to higher organ damage and mortality rates. Failed neutrophil migration was associated with elevated CXCL2 chemokine plasma levels and lower expression of the CXCR2 receptor on circulating neutrophils compared with non-treated CLP-induced septic mice. FK506 did not directly affect CXCL2-induced CXCR2 internalization by transfected HEK-293 cells or mice neutrophils, despite increasing CXCL2 release by LPS-treated macrophages. Finally, the CLP-induced response of Nfat1-/- mice was similar to those observed in the Nfat1+/+ genotype, suggesting that the FK506 effect is not dependent on the NFAT1 pathway. CONCLUSION: Our data indicate that the increased susceptibility to infection of FK506-treated mice is associated with failed neutrophil migration due to the reduced membrane availability of CXCR2 receptors in response to exacerbated levels of circulating CXCL2.


Subject(s)
Neutrophils , Sepsis , Humans , Mice , Animals , Tacrolimus/pharmacology , Tacrolimus/therapeutic use , HEK293 Cells , Mice, Inbred C57BL , Sepsis/metabolism , Neutrophil Infiltration
2.
J Leukoc Biol ; 109(6): 1063-1070, 2021 06.
Article in English | MEDLINE | ID: mdl-33020963

ABSTRACT

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Inflammatory monocytes are recruited to both the infection site and vital organs during sepsis; however, the mechanisms that orchestrate their migration, as well as the participation of these cells in systemic inflammation and vital organ damage, are still not fully elucidated. In this context, we described that CCR2-deficient mice had diminished migration of inflammatory monocytes from bone marrow to the circulation and subsequently to the site of infection and vital organs during cecal ligation and puncture (CLP)-induced polymicrobial sepsis. The reduction in the migration of inflammatory monocytes to the infection site was accompanied by a significant increase in the number of neutrophils in the same compartment, which seemed to counterbalance the absence of inflammatory monocytes in controlling microbial growth. Indeed, wild-type (WT) and CCR2-deficient mice under CLP presented similar control of infection. However, the CCR2-deficient mice were more resistant to sepsis, which was associated with a decrease in inflammatory mediators and organ damage biomarkers. Furthermore, the systemic adoptive transfer of CCR2-WT or CCR2-deficient inflammatory monocytes into CCR2-deficient mice equally increased the susceptibility to sepsis, demonstrating the deleterious role of these cells in the periphery even when CCR2 is absent. Thus, despite the host-protective role of inflammatory monocytes in controlling infection, our results demonstrated that the mechanism by which CCR2 deficiency shows protection to CLP-induced sepsis is due to a decrease of inflammatory monocytes emigration from bone marrow to the circulation and vital organs, resulting in the reduction of organ damage and systemic cytokine production.


Subject(s)
Bone Marrow/immunology , Chemotaxis, Leukocyte/genetics , Chemotaxis, Leukocyte/immunology , Monocytes/immunology , Monocytes/metabolism , Receptors, CCR2/deficiency , Sepsis/etiology , Sepsis/metabolism , Animals , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Genetic Predisposition to Disease , Inflammation Mediators/metabolism , Mice , Mice, Knockout
3.
Front Immunol ; 11: 1238, 2020.
Article in English | MEDLINE | ID: mdl-32714320

ABSTRACT

Sepsis is characterized by the host's dysregulated immune response to an infection followed by a potentially fatal organ dysfunction. Although there have been some advances in the treatment of sepsis, mainly focused on broad-spectrum antibiotics, mortality rates remain high, urging for the search of new therapies. Oxidative stress is one of the main features of septic patients, so antioxidants can be a good alternative treatment. Agaricus brasiliensis is a nutraceutical rich in bioactive compounds such as polyphenols and polysaccharides, exhibiting antioxidant, antitumor, and immunomodulatory activities. Here, we investigated the immunomodulatory and antioxidant effects of A. brasilensis aqueous extract in the cecal ligation and puncture (CLP) sepsis model. Our data showed that aqueous extract of A. brasiliensis reduced systemic inflammatory response and improved bacteria clearance and mice survival. In addition, A brasiliensis decreased the oxidative stress markers in serum, peritoneal cavity, heart and liver of septic animals, as well as ROS production (in vitro and in vivo) and tert-Butyl hydroperoxide-induced DNA damage in peripheral blood mononuclear cells from healthy donors in vitro. In conclusion, the aqueous extract of A. brasiliensis was able to increase the survival of septic animals by a mechanism involving immunomodulatory and antioxidant protective effects.


Subject(s)
Agaricales/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Animals , Antioxidants/chemistry , Biomarkers , Blood Cell Count , Cytokines/metabolism , Disease Models, Animal , Humans , Immunomodulation/drug effects , Male , Mice , Nitric Oxide/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Protective Agents/chemistry , Protective Agents/pharmacology , Reactive Oxygen Species/metabolism , Sepsis/diagnosis , Sepsis/drug therapy , Sepsis/etiology
4.
Front Microbiol ; 10: 492, 2019.
Article in English | MEDLINE | ID: mdl-31024463

ABSTRACT

Aedes mosquitoes are important vectors for emerging diseases caused by arboviruses, such as chikungunya (CHIKV). These viruses' main transmitting species are Aedes aegypti and Ae. albopictus, which are present in tropical and temperate climatic areas all over the globe. Knowledge of vector characteristics is fundamentally important to the understanding of virus transmission. Only female mosquitoes are able to transmit CHIKV to the vertebrate host since they are hematophagous. In addition, mosquito microbiota is fundamentally important to virus infection in the mosquito. Microorganisms are able to modulate viral transmission in the mosquito, such as bacteria of the Wolbachia genus, which are capable of preventing viral infection, or protozoans of the Ascogregarina species, which are capable of facilitating virus transmission between mosquitoes and larvae. The competence of the mosquito is also important in the transmission of the virus to the vertebrate host, since their saliva has several substances with biological effects, such as immunomodulators and anticoagulants, which are able to modulate the host's response to the virus, interfering in its pathogenicity and virulence. Understanding the Aedes vector-chikungunya interaction is fundamentally important since it can enable the search for new methods of combating the virus' transmission.

5.
Cells ; 7(11)2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30360497

ABSTRACT

Sepsis is a systemic disease with life-threatening potential and is characterized by a dysregulated immune response from the host to an infection. The organic dysfunction in sepsis is associated with the production of inflammatory cascades and oxidative stress. Previous studies showed that Aedes aegypti saliva has anti-inflammatory, immunomodulatory, and antioxidant properties. Considering inflammation and the role of oxidative stress in sepsis, we investigated the effect of pretreatment with salivary gland extract (SGE) from Ae. aegypti in the induction of inflammatory and oxidative processes in a murine cecum ligation and puncture (CLP) model. Here, we evaluated animal survival for 16 days, as well as bacterial load, leukocyte migration, and oxidative parameters. We found that the SGE pretreatment improved the survival of septic mice, reduced bacterial load and neutrophil influx, and increased nitric oxide (NO) production in the peritoneal cavity. With regard to oxidative status, SGE increased antioxidant defenses as measured by Trolox equivalent antioxidant capacity (TEAC) and glutathione (GSH), while reducing levels of the oxidative stress marker malondialdehyde (MDA). Altogether, these data suggest that SGE plays a protective role in septic animals, contributing to oxidative and inflammatory balance during sepsis. Therefore, Ae. aegypti SGE is a potential source for new therapeutic molecule(s) in polymicrobial sepsis, and this effect seems to be mediated by the control of inflammation and oxidative damage.

6.
Nutrients ; 9(12)2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29194364

ABSTRACT

Autoimmune diseases are still considered to be pressing concerns due the fact that they are leaders in death and disability causes worldwide. Resveratrol is a polyphenol derived from a variety of foods and beverages, including red grapes and red wine. Anti-inflammatory, antioxidant, and antiaging properties of resveratrol have been reported, and in some animal and human studies this compound reduced and ameliorated the progression of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, psoriasis, inflammatory bowel disease, and type 1 diabetes mellitus. Thus, this review aims to summarize and critically analyze the role of resveratrol in the modulation of several organ-specific or systemic autoimmune diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Stilbenes/therapeutic use , Animals , Humans , Molecular Structure , Resveratrol , Stilbenes/chemistry
7.
Theranostics ; 7(17): 4168-4182, 2017.
Article in English | MEDLINE | ID: mdl-29158817

ABSTRACT

Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells play essential roles in pathophysiological processes such as cardiac hypertrophy, cardiomyocyte survival and apoptosis, cardiac fibrosis, and angiogenesis in relation to CVDs. In this review, we will first outline the current knowledge about the physical characteristics, biological contents, and isolation methods of EVs. We will then focus on the functional roles of cardiovascular EVs and their pathophysiological effects in CVDs, as well as summarize the potential of EVs as therapeutic agents and biomarkers for CVDs. Finally, we will discuss the specific application of EVs as a novel drug delivery system and the utility of EVs in the field of regenerative medicine.


Subject(s)
Extracellular Vesicles/metabolism , Theranostic Nanomedicine/methods , Animals , Biomarkers/metabolism , Cardiovascular Diseases/metabolism , Exosomes/metabolism , Humans
8.
Adv Exp Med Biol ; 998: 101-112, 2017.
Article in English | MEDLINE | ID: mdl-28936735

ABSTRACT

Sepsis is one of the main causes of ICU hospitalization worldwide, with a high mortality rate, and is associated with a large number of comorbidities. One of the main comorbidities associated with sepsis is septic cardiomyopathy. This process occurs mainly due to mechanisms of damage in the cardiovascular system that will lead to changes in cardiovascular physiology, such as decreased Ca2+ response, mitochondrial dysfunction and decreased ß-adrenergic receptor response. Within this process the exosomes play an important role in the pathophysiology of this disease, in which the exosomal content is related to mechanisms that will trigger its development. After platelet activation through ROS exposition, exosomes containing high concentrations of NADPH are released in heart blood vessels, those exosomes will be internalized in endothelial cells leading to cell death and cardiac dysfunction. On the opposite, exosomes derived from mesenchymal stem cells contain miR-223, that have anti-inflammatory properties, are released in less quantities in septic patients causing an imbalance that leads to cardiac dysfunction.


Subject(s)
Cardiomyopathies/metabolism , Exosomes/metabolism , Myocardium/metabolism , Sepsis/metabolism , Signal Transduction , Animals , Cardiomyopathies/genetics , Cardiomyopathies/microbiology , Cardiomyopathies/pathology , Exosomes/genetics , Exosomes/microbiology , Exosomes/pathology , Host-Pathogen Interactions , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardium/pathology , NADP/metabolism , Sepsis/genetics , Sepsis/microbiology , Sepsis/pathology
9.
J Transl Med ; 14(1): 315, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27846846

ABSTRACT

Cardiovascular diseases (CVD) are an important cause of death worldwide. Anthocyanins are a subgroup of flavonoids found in berries, flowers, fruits and leaves. In epidemiological and clinical studies, these polyphenols have been associated with improved cardiovascular risk profiles as well as decreased comorbidities. Human intervention studies using berries, vegetables, parts of plants and cereals (either fresh or as juice) or purified anthocyanin-rich extracts have demonstrated significant improvements in low density lipoproteins oxidation, lipid peroxidation, total plasma antioxidant capacity, and dyslipidemia as well as reduced levels of CVD molecular biomarkers. This review discusses the use of anthocyanins in animal models and their applications in human medicine, as dietary supplements or as new potent drugs against cardiovascular disease.


Subject(s)
Anthocyanins/pharmacology , Cardiovascular System/drug effects , Animals , Anthocyanins/chemistry , Anthocyanins/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Biomarkers/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular System/pathology , Disease Models, Animal , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...