Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Parasitol ; 51(8): 643-658, 2021 07.
Article in English | MEDLINE | ID: mdl-33753093

ABSTRACT

Bovine babesiosis is a tick-borne disease caused by apicomplexan parasites of the Babesia genus that represents a major constraint to livestock production worldwide. Currently available vaccines are based on live parasites which have archetypal limitations. Our goal is to identify candidate antigens so that new and effective vaccines against Babesia may be developed. The perforin-like protein (PLP) family has been identified as a key player in cell traversal and egress in related apicomplexans and it was also identified in Babesia, but its function in this parasite remains unknown. The aim of this work was to define the PLP family in Babesia and functionally characterize PLP1, a representative member of the family in Babesia bovis. Bioinformatic analyses demonstrate a variable number of plp genes (four to eight) in the genomes of six different Babesia spp. and conservation of the family members at the secondary and tertiary structure levels. We demonstrate here that Babesia PLPs contain the critical domains present in other apicomplexan PLPs to display the lytic capacity. We then focused on the functional characterization of PLP1 of B. bovis, both in vitro and in vivo. PLP1 is expressed and exposed to the host immune system during infection and has high hemolytic capacity under a wide range of conditions in vitro. A B. bovis plp1 knockout line displayed a decreased growth rate in vitro compared with the wild type strain and a peculiar phenotype consisting of multiple parasites within a single red blood cell, although at low frequency. This phenotype suggests that the lack of PLP1 has a negative impact on the mechanism of egression of the parasite and, therefore, on its capacity to proliferate. It is possible that PLP1 is associated with other proteins in the processes of invasion and egress, which were found to have redundant mechanisms in related apicomplexans. Future work will be focused on unravelling the network of proteins involved in these essential parasite functions.


Subject(s)
Babesia bovis , Babesia , Babesiosis , Cattle Diseases , Parasites , Animals , Babesia bovis/genetics , Cattle , Perforin
2.
Pathogens ; 9(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317119

ABSTRACT

Anaplasma marginale, a well-known cattle pathogen of tropical and subtropical world regions, has been previously molecularly characterized in a giant anteater (Myrmecophaga tridactyla) from Corrientes, Argentina. Ticks or other hematophagous arthropod involved in the wild transmission cycle remained unknown. The aim of the present study was to analyze the simultaneous occurrence of A. marginale in blood samples and ticks from giant anteaters from Corrientes in order to investigate if ticks could be relevant in the transmission among these mammals. Blood samples from 50 giant anteaters collected in different years and 26 ticks Amblyomma dubitatum and A. sculptum were studied through the molecular amplification of two unequivocal species-specific genes from A. marginale: msp5 and msp1ß. Twenty five giant anteaters and tick organs (salivary glands, gut and oviduct) from 11 ticks tested positive to the A. marginale DNA amplification. The further molecular characterization through MSP1a tandem repeats analysis revealed the presence of genotypes circulating among giant anteaters that had been previously identified in cattle blood samples from the same geographical region. These results confirm the presence of A. marginale in giant anteaters in Corrientes and suggests that A. dubitatum and A. sculptum ticks could be involved in the transmission among giant anteaters. Future studies will determine the role of these tick species in the wild transmission cycle in the study area and the eventual connection with the domestic cycle.

3.
Parasit Vectors ; 13(1): 602, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33261638

ABSTRACT

BACKGROUND: Thrombospondin-related anonymous protein (TRAP) has been described as a potential vaccine candidate for several diseases caused by apicomplexan parasites. However, this protein and members of this family have not yet been characterized in Babesia bigemina, one of the most prevalent species causing bovine babesiosis. METHODS: The 3186-bp Babesia bigemina TRAP-1 (BbiTRAP-1) gene was identified by a bioinformatics search using the B. bovis TRAP-1 sequence. Members of the TRAP and TRAP-related protein families (TRP) were identified in Babesia and Theileria through a search of the TSP-1 adhesive domain, which is the hallmark motif in both proteins. Structural modeling and phylogenetic analysis were performed with the identified TRAP proteins. A truncated recombinant BbiTRAP-1 that migrates at approximately 107 kDa and specific antisera were produced and used in Western blot analysis and indirect fluorescent antibody tests (IFAT). B-cell epitopes with neutralizing activity in BbiTRAP-1 were defined by enzyme-linked immunosorbent assays (ELISA) and invasion assays. RESULTS: Three members of the TRAP family of proteins were identified in B. bigemina (BbiTRAP-1 to -3). All are type 1 transmembrane proteins containing the von Willebrand factor A (vWFA), thrombospondin type 1 (TSP-1), and cytoplasmic C-terminus domains, as well as transmembrane regions. The BbiTRAP-1 predicted structure also contains a metal ion-dependent adhesion site for interaction with the host cell. The TRP family in Babesia and Theileria species contains the canonical TSP-1 domain but lacks the vWFA domain and together with TRAP define a novel gene superfamily. A variable number of tandem repeat units are present in BbiTRAP-1 and could be used for strain genotyping. Western blot and IFAT analysis confirmed the expression of BbiTRAP-1 by blood-stage parasites. Partial recognition by a panel of sera from B. bigemina-infected cattle in ELISAs using truncated BbiTRAP-1 suggests that this protein is not an immunodominant antigen. Additionally, bovine anti-recombinant BbiTRAP-1 antibodies were found to be capable of neutralizing merozoite invasion in vitro. CONCLUSIONS: We have identified the TRAP and TRP gene families in several Babesia and Theileria species and characterized BbiTRAP-1 as a novel antigen of B. bigemina. The functional relevance and presence of neutralization-sensitive B-cell epitopes suggest that BbiTRAP-1 could be included in tests for future vaccine candidates against B. bigemina.


Subject(s)
Babesia/immunology , Babesiosis/parasitology , Cattle Diseases/parasitology , Merozoites/immunology , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Thrombospondin 1/chemistry , Thrombospondin 1/immunology , Amino Acid Motifs , Amino Acid Sequence , Animals , Babesia/classification , Babesia/genetics , Babesia/growth & development , Cattle , Female , Male , Merozoites/chemistry , Merozoites/genetics , Merozoites/growth & development , Mice , Mice, Inbred BALB C , Multigene Family , Phylogeny , Protozoan Proteins/genetics , Sequence Alignment , Thrombospondin 1/genetics
4.
Ticks Tick Borne Dis ; 10(6): 101270, 2019 10.
Article in English | MEDLINE | ID: mdl-31445874

ABSTRACT

Protection against the intraerythrocytic protozoan parasite Babesia bovis depends on both strong innate and adaptive immune response, this latter involving the presentation of parasite antigens to CD4+ T-lymphocytes by professional antigen-presenting cells. Secretion of Th1 cytokines by CD4+ T cell is also very important for isotype switching to IgG2, the best opsonising antibody isotype in cattle, to target extracellular parasites and parasite antigens displayed at the erythrocyte surface. In the field of vaccinology, heterologous prime-boost schemes combining protein-adjuvant formulations with a modified vaccinia Ankara vector expressing the same antigen have demonstrated the induction of both humoral and cellular immune responses. It has been previously demonstrated that MVA-infected dendritic cells can present antigens in the context of MHC II and activate CD4+ T cell. These results support the use of the MVA viral vector for a pathogen like Babesia bovis, which only resides within erythrocytes. In this study, 13-15-months-old Holstein-Friesian steers were immunised with a subunit vaccine as a prime and a modified vaccinia Ankara vector as a boost, both expressing a chimeric multi-antigen (rMABbo - rMVA). This antigen includes the immunodominant B and T cell epitopes of three B. bovis proteins: merozoite surface antigen - 2c (MSA - 2c), rhoptry associated protein 1 (RAP - 1) and heat shock protein 20 (HSP20). Responses were compared with the Babesia bovis live attenuated vaccine used in Argentina (R1A). Eleven weeks after the first immunisation, all bovines were challenged by the inoculation of a virulent B. bovis strain. All groups were monitored daily for hyperthermia and reduction of packed cell volume. Both the rMABbo - rMVA and R1A vaccinated animals developed high titters of total IgG antibodies and an antigen-specific Th1 cellular response before and after challenge. However, all rMABbo - rMVA steers showed clinical signs of disease upon challenge. Only the R1A live vaccine group developed an immune response associated with in vitro neutralising antibodies at a level that significantly inhibited the parasite invasion. The lack of protection observed with this recombinant formulation indicates the need to perform further basic and clinical studies in the bovine model in order to achieve the desired effectiveness. This is the first report in which a novel vaccine candidate against Babesia bovis was constructed based on a recombinant and rationally designed viral vector and evaluated in the biological model of the disease.


Subject(s)
Babesia bovis/immunology , Babesiosis/prevention & control , Cattle Diseases/prevention & control , Protozoan Vaccines/immunology , Vaccination/veterinary , Animals , Antibodies, Neutralizing/immunology , Babesiosis/immunology , Cattle , Cattle Diseases/immunology , Epitopes/immunology , Immunity, Cellular , Immunity, Humoral , Male , Recombinant Proteins/immunology , Th1 Cells/immunology , Vaccines, Attenuated/immunology , Vaccinia virus/immunology
5.
Vet Sci ; 5(1)2018 Jan 23.
Article in English | MEDLINE | ID: mdl-29360801

ABSTRACT

The current method for Babesia spp. serodiagnosis based on a crude merozoite antigen is a complex and time-consuming procedure. An indirect enzyme-linked immunosorbent assay (iELISA) based on a recombinant multi-antigen of Babesia bovis (rMABbO) was developed for detection of antibodies in bovines suspected of infection with this parasite. The multi-antigen comprises gene fragments of three previously characterized B. bovis antigens: MSA-2c, RAP-1 and the Heat Shock protein 20 that are well-conserved among geographically distant strains. The cutoff value for the new rMABbo-iELISA was determined using 75 known-positive and 300 known-negative bovine sera previously tested for antibodies to B. bovis by the gold-standard ELISA which uses a merozoite lysate. A cutoff value of ≥35% was determined in these samples by receiver operator characteristic (ROC) curve analysis, showing a sensitivity of 95.9% and a specificity of 94.3%. The rMABbo-iELISA was further tested in a blind trial using an additional set of 263 field bovine sera from enzootic and tick-free regions of Argentina. Results showed a good agreement with the gold standard test with a Cohen's kappa value of 0.76. Finally, the prevalence of bovine babesiosis in different tick enzootic regions of Argentina was analyzed where seropositivity values among 68-80% were obtained. A certain level of cross reaction was observed when samples from B. bigemina infected cattle were analyzed with the new test, which can be attributed to shared epitopes between 2 of the 3 antigens. This new rMABbo-iELISA could be considered a simpler alternative to detect anti Babesia spp. antibodies and appears to be well suited to perform epidemiological surveys at the herd level in regions where ticks are present.

6.
Vaccine ; 34(33): 3913-9, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27269058

ABSTRACT

Protection against the intraerythrocytic bovine parasite Babesia bovis requires both humoral and cellular immune responses. Therefore, tailored combinations of immunogens targeted at both arms of the immune system are strategies of choice to pursue sterilizing immunity. In this study, different heterologous prime-boost vaccination schemes were evaluated in mice to compare the immunogenicity induced by a recombinant adenovirus, a modified vaccinia Ankara vector or a subunit vaccine all expressing a chimeric multi-antigen. This multi-antigen includes the immunodominant B and T cell epitopes of three B. bovis proteins: Merozoite Surface Antigen - 2c (MSA-2c), Rhoptry Associated Protein - 1 (RAP-1) and Heat Shock Protein 20 (HSP20). Both priming with the adenovirus or recombinant multi-antigen and boosting with the modified vaccinia Ankara vector achieved a high degree of activation of TNFα and IFNγ-secreting CD4(+) and CD8(+) specific T cells 60days after the first immunization. High titers of specific IgG antibodies were also detected at the same time point and lasted up to day 120 of the first immunization. Only the adenovirus - MVA combination triggered a marked isotype skew for the IgG2a antibody subclass meanwhile for the other immune traits analyzed here, both vaccination schemes showed similar performances. The immunological characterization in the murine model of these rationally designed immunogens led us to propose that adenoviruses as well as the bacterially expressed multi-antigen are highly reliable primer candidates to be considered in future experiments in cattle to test protection against bovine babesiosis.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Babesiosis/prevention & control , Cattle Diseases/prevention & control , Immunization, Secondary , Protozoan Vaccines/immunology , Animals , Antibodies, Protozoan/blood , Babesia bovis , Cattle , Cattle Diseases/parasitology , Cell Line , Cricetinae , Epitopes/immunology , HEK293 Cells , Humans , Immunoglobulin G/blood , Interferon-gamma/immunology , Male , Mice, Inbred BALB C , Protozoan Proteins/immunology , Recombinant Proteins/immunology , Th1 Cells/immunology , Vaccinia virus
7.
Biomed Res Int ; 2014: 140829, 2014.
Article in English | MEDLINE | ID: mdl-25110654

ABSTRACT

The Delayed type hypersensitivity skin test (DTH) and interferon-gamma assay are used for the diagnosis of bovine tuberculosis (TBB). The specificity of these diagnoses, however, is compromised because both are based on the response against purified protein derivative of Mycobacterium bovis (PPD-B). In this study, we assessed the potential of two cocktails containing M. bovis recombinant proteins: cocktail 1 (C1): ESAT-6, CFP-10 and MPB83 and cocktail 2 (C2): ESAT-6, CFP-10, MPB83, HspX, TB10.3, and MPB70. C1, C2, and PPD-B showed similar response by DTH in M. bovis-sensitized guinea pigs. Importantly, C1 induced a lower response than PPD-B in M. avium-sensitized guinea pigs. In cattle, C1 displayed better performance than PPD-B and C2; indeed, C1 showed the least detection of animals either vaccinated or Map-infected. To optimize the composition of the cocktails, we obtained protein fractions from PPD-B and tested their immunogenicity in experimentally M. bovis-infected cattle. In one highly reactive fraction, seven proteins were identified. The inclusion of FixB in C1 enhanced the recognition of M. bovis-infected cattle without compromising specificity. Our data provide a promising basis for the future development of a cocktail for TBB detection without interference by the presence of sensitized or infected animals with other mycobacteria.


Subject(s)
Mycobacterium bovis/physiology , Recombinant Proteins , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/microbiology , Animals , BCG Vaccine/immunology , Cattle , Guinea Pigs , Hypersensitivity, Delayed/immunology , Hypersensitivity, Delayed/microbiology , Interferon-gamma/metabolism , Mass Spectrometry , Recombinant Proteins/immunology , Tuberculosis, Bovine/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...